

Microbial ecology and probiotics to support animal nutrition

dal -

Research Manager, Health by Nutrition

May 11, 2021

- Main concern : improve feed efficiency and decrease pathogens load
- Antibiotics (AGP) were largely used to improve animal performance even though the mode of action not fully understood

But a more responsible animal production

Transition to the Ab free, less medication

Produce a safe, qualitative, sustainable and afordable animal protein

Poultry and pigs = athletes! With boosted metabolism, High level of feed intake

Wet litter, undigested feed particules

Bacterial translocation and systemic lesions

Research & Innovation

Digestive Health : The « Critical Transition » concept

Van de Guchte et al. 2018

Microbiota is key to control inflammation, barrier integrity, RedOx balance

Intestinal microbial is also key when considering pathogens => ecological environmment

esearch [&] Innovation

- Integrate « pathogens » in their microbial environment
- Maintain an optimal microbiota to control pathogen development => prevention by increasing resilience

"microbiota ⇔ performance"

- Experiment repeated 3 times to confirm the results
- In each experiment, there were bacterial types whose abundance was correlated with performance
- These performance associated bacteria varied from one trial to the next

Research [&] Innovation

Metagenomics : what are the microbial functions modified in dysbiosis challenge?

One way to improve animal production = probiotics

Growth rate

Research [&] Innovation

- Feed efficiency and Nutrient Digestibility
- Carcass yield ; Egg production; milk production
- Animal product quality
- Gut health
- Control or prevention of enteric pathogens

A F

Ε

Т

V

Ε

F

F

С

A

С

γ

Main features of probiotics for animal production

- Non pathogenic
 - Non toxic
- Not carrying antibiotic resistance
- Should survive in digestive tract
 - Acid conditions in stomach
 - Digestive enzymes
 - Bile salts
- Should survive the feed processing
- Should have a beneficial effect on host microbiota or/and host intestinal functions

Feed processing is high constraint for the use of feed additives

- High heat
- High Pressure

Probiotic effect on the host can be direct or indirect (through microbiota)

Probiotics act on the host : effect on the intestinal barrier, on inflammation

Research [&] Innovation

- Model: Caco-2 cells established in monolayer in a transwell system
- TEER measurement over time
- Anti-inflammatory properties: IL8 production
- Similar can be done for antioxydant properties

The main types of probiotics in animal production

Type Lactobacillus	Type Bifidobacterium	Other lactic acid bacteria	Other microorganisms
 L. brevis ^a	B. animalis ^a	Enterococcus faecalis	Bacillus cereus
L. casei ^a	B. longum ^a	Enterococcus faecium	Bacillus licheniformis ^a
L. crispatus ^a	B. pseudolongum	Lactococcus lactis ^a	Bacillus subtilis ^a
L. farciminis ^a	B. thermophilum	Leuconostoc citreum ^a	Propionibact. Freudenreichi ^a
L. fermentum ^a		Leuconostoc lactis ^a	Saccharomyces cerevisiae (boulardi) ^a
L. murinus		Leuconostoc mesenteroides ^a	Saccharomyces pastorianus ^a
L. gallinarium ^a		Pediococcus acidilactici ^a	Kluyveromyces fragilis
L. paracasei ^a		Pediococcus pentosaceus ^a	Kluyveromyces marxianus ^a
L. pentosus ^a		Streptococcus infantarius	Aspergillus orizae
L. plantarum ^a		Streptococcus salivarius	Aspergillus niger
L. reuteri ^a		Streptococcus thermophilus ^a	
L. rhamnosus ^a		Sporolactobacillus inulinus	
L. salivarius ^a			

Markowiak and Śliżewska Gut Pathog (2018) 10:21

The future of probiotics in animal nutrition

• New type of probiotics

Research [&] Innovation

- Ex of 2nd generation probiotics

Butyricicoccus pullicaecorum Reduces Feed Conversion and Protects from Potentially Harmful Intestinal Microorganisms and Necrotic Enteritis in Broilers

Front. Microbiol., 21 September 2016 | https://doi.org/10.3389/fmicb.2016.01416

- Precise Nutrition through Machine learning and artificial intelligence
- Improve characterization of the biological response to probiotics
- Develop predictive modelling of microbial and host responses to probiotics

Take home messages

- Animal nutrition today = feeding 'athletes' keeping them resilient
- Microbiota (its functions and its ecology) is key for improving gut health (inflammation, leaky gut, infections)
- Animal nutritionists have to take into account the microbiota, and not only the animal *per se*
- Probiotics in animal nutrition are part of the solutions to succeed demedication

• Future should focus on new type of probiotics and precise nutrition

Thank you !

