Interactions bi-directionnelles entre polyphénols et microbiote intestinal: vers une nouvelle classe de composés prébiotiques ?

Symposium Adebiotech - 11 Mai 2021 - Denis Guyonnet

Nutrition Segment organization

A customer centric strategy with a customer driven organization

symrise 🌍

Diana Pet Food provides high-value solutions improving pet's wellbeing and owner's satisfaction.

ADF/IDF includes ADF, IDF, Isonova and FITCO companies. ADF/ IDF is a stream-driven leading US meat and egg-based protein specialist and pioneer in natural nutrition ingredients.

Diana Food offers consumer well-being solutions made from natural and sustainable ingredients for the food and beverage industry.

Diana Aqua develops and delivers advanced natural and sustainable solutions for the aquaculture feed industry.

Probi develops probiotics of the highest quality for food, beverage, and nutritional supplements industries with health-promoting benefits.

diananova 🏵

Nova is an incubator structure within Diana to accelerate development in Health & Nutrition

Its activities are currently focusing on 3 platforms:

Food Protection

A platform which develops natural antimicrobials and antioxidants in order to answer consumer's demands for cleaner and clearer solutions to food spoilage and food safety.

Side-Streams Valorization

A platform which explores how to improve the industrial valorization of fruit and vegetable side streams by developing research & innovation initiatives

Gut Modulation

A platform which identifies the natural components of our raw materials (such as polyphenols, fiber and probiotics,) which have the highest impact on gut microbiota, and promote health through healthy nutrition.

Pro-, Pre- and synbiotics: a field of innovation in health & nutrition

From Cunningham et al., Trends in Microbiology, 2021

Gut Microbiota: A Dynamic System

Gut microbiota is also evolving through lifespan (e.g. decrease diversity in elderly) and its composition varies among individuals and depends on environmental factors (e.g. lifestyle, diet, drugs, stress),

Restoration of Gut Symbiosis with dietary strategy Leveraging on multiple mechanisms of actions

Polyphenols: Family of phenolic compounds with high chemical diversity

High chemical diversity: > 8000 different structures

Dietary Consumption: 1200mg/day (Suvimax) – 585-1800 mg/day (EU & non-EU countries)

Perez-Jimenez et al., AJCN, 2011; Del Bo et al., Nutrients, 2019; Fraga et al., Food Funct, 2019

Not all polyphenols are the same Polyphenol composition of 6 Nordic berries

Dudonné et al., J Food Compo Anal, 2015

Intestinal fate of polyphenol and impact on gut health diananova

Effect of polyphenol on gut microbiota : increase in *Akkermansia muciniphila* with proanthocyanidins

Design: 8-week study, 12 mice/group

Similar effects have been observed with other fruit extracts rich in tannins (pomegranate, apple, blueberry, grape)

Effect of polyphenols on gut microbiota

- > Modulation of gut microbiota composition observed with different polyphenols
- > Most of data obtained in rodent models
- > No common effect shared by polyphenols
- > Data in humans obtained in small sample size studies (15-50 subjects)
- Need for larger and well designed human studies with appropriate gut microbiota methods (eg metagenomics)

Polyphenols can be considered as prebiotic

<u>Prebiotics</u>: a substrate that is selectively utilized by host microorganisms conferring a health benefit (ISAPP consensus definition, Gibson et al, 2017)

=> This new definition expands the concept of prebiotics to possibly include non-carbohydrate substances

Integrated view of intestinal metabolism of polyphenols and absorption

Loo et al., Compr Rev Food Sci Food Saf, 2020

Enzymatic reactions catalysed by human gut microbiota

Enzymatic reaction	Polyphenols	Gut bacteria genus
O-glycosidase	Flavonols, anthocyanins	Clostridium, Eubacterium, Enterococcus, Lactobacillus, Bifidobacterium
C-glycosidase	Flavones, isoflavones	Eubacterium, Enterococcus, Lactococcus
Esterase	Hydroxycinnamic acid	Lactobacillus, Bifidobacterium
C-ring cleavage	Flavonols, flavanones, flavan-3-ols, anthocyanins	Eubacterium, Flavonifractor, Eggerthella, Lactobacillus, Butyrivibrio, Slackia
Lactone cleavage	Ellagitannins	Gordonibacter, Ellagibacter
Dehydroxylation	Flavanones, flavonols, tannins, flavan-3-ols, anthocyanins	Clostridium, Eubacterium, Flavonifractor, Eggerthella, Gordonibacter, Ellagibacter
Demethylation	Flavanones, flavonols, flavan-3-ols, anthocyanins, lignans	Eubacterium, Blautia, Lactobacillus, Streptococcus
Decarboxylation	Tannins, benzoic acid, Hydroxycinnamic acid	Gordonibacter, Ellagibacter
Reduction	Isoflavones, lignans, stilbenes	Bifidobacterium, Eggerthella, Slackia, Adlercreutzia
4		

For details & review: Cortés-Martin et al., Mol Nutr Food Res, 2020

Metabolism of phenolic compounds by lactic acid bacteria (*Lactobacillus*, *Bifidobacteria*)

Metabotype concept: Clustering according to the ability to produce different metabolites of ellagitannins

García-Villalba et al., J Agric Food Chem, 2017; Selma et al., Food Function, 2017; Romo-Vaquero et al., Mol Nutr Food Res, 2019

Prevalence of urolithin metabotype in healthy subjects, overweight-obese and disease patients

Mean distribution percentage of the three urolithin-producing metabolic metabotypes present in healthy normoweight (n = 20), overweight/obese subjects (n = 49) and patients with disease (metabolic syndrome (n = 41) and colorectal cancer (n = 26)).

Tomás-Barberán et al, J Agric Food Chem, 2014; Selma et al., Food Function, 2017

How to translate prebiotic definition* for polyphenols?

<u>*Prebiotics</u>: ISAPP consensus definition (Gibson et al., Nat Rev Gastroenterol, 2017)

- > Characterize the metabolic pathways for the different types of polyphenols
- > Identify people harbouring the required gut microbiota species to metabolize polyphenols
 - Demonstrate the link between metabolism of polyphenols & health benefit

- > Develop a new category of natural prebiotics
- Implement personalized dietary strategy
- > Potential 2nd generation probiotics based on their ability to metabolize polyphenols

Integrated view of the development of new natural dietary products with polyphenols

MERCIDE VOTRE ATTENTION

Contact: denis.guyonnet@symrise.com