

Méthodes de machine learning pour la recherche de signatures taxonomiques du microbiote intestinal

Application à des données issues de séquençage ciblé de régions variables des gènes de l'ARNr 16S

Webinaire Adebiotech - 15 Juin 2021

ADEBIOTECH
THINK TANK ONE HEALTH

Florence Gillaizeau PhD, Biostatistics Manager

Introduction

Application: Méthodes

Application : Résultats

Conclusion

From Human to Data... From Science to Market

CLINICAL EXPERTISE

MICROBIOME

CENTRAL LAB

DATA ANALYTICS

TESTER LES EFFETS DES PRODUITS
AVEC DES VOLONTAIRES, DES
PATIENTS OU CONSOMMATEURS

Microbiome: Niveau d'expertise

Statistiques pour le microbiome

- > Y-a-t-il un changement de profil du microbiome lié au traitement?
- > Quelles espèces sont concernées par ce changement?
- > Est-ce que le microbiome module l'effet d'un traitement?

> Est-il possible de prédire une maladie ou un évènement à partir

de signatures du microbiome?

> Peut-on établir une relation cause-effet?

"Data don't make any sense, we will have to resort to statistics."

Statistiques pour le microbiome

Analyse exploratoire

- Détection des outliers
- Classification (clustering)

Visualisation

Recherche de biomarqueurs

Test d'association/ Prédiction

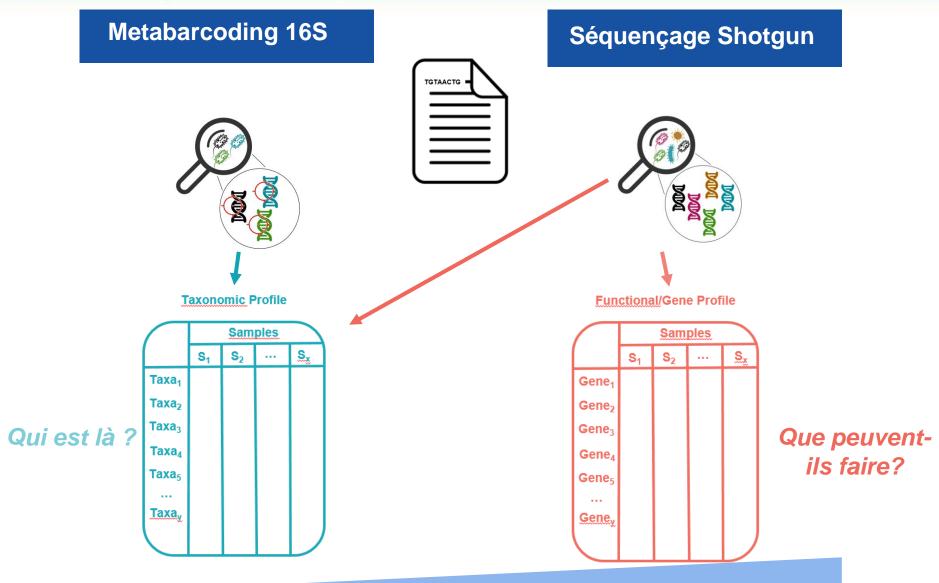
- Données longitudinales
- Ajustement de covariables

Abondance différentielle

Multiples tests d'hypothèses

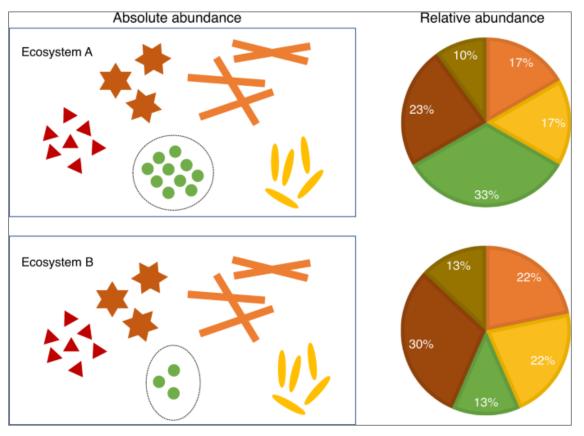
- •Contrôle des faux positifs
- Puissance

Deux approches principales de séquençage



Critères d'évaluation du microbiome

Composition du microbiome : abondances absolues/relatives



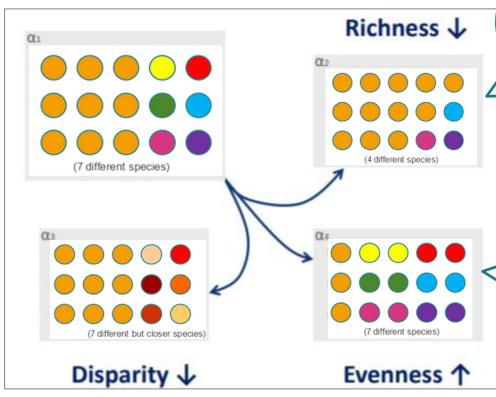
Lin, H., Peddada, S.D. Analysis of compositions of microbiomes with bias correction. *Nat Commun* **11**, 3514 (2020).

Critères d'évaluation du microbiome

Composition du microbiome : abondances absolues/relatives

■ Diversité du microbiome

au sein d'un échantillon (α-diversité)



Combien d'espèces différentes sont présentes dans mon échantillon?

Y-a-t-il une répartition équitable des espèces ou certaines espèces sont-elles dominantes?

Illustration des indices de diversité (Thomas Carton).

Critères d'évaluation du microbiome

Quelle différence de

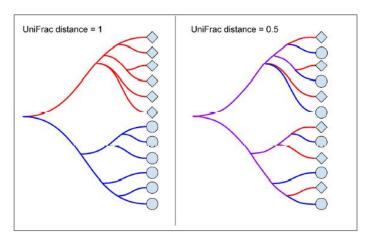
composition du

microbiome entre groupes

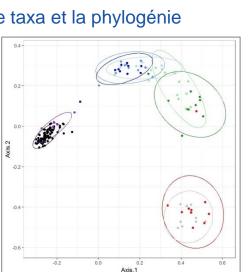
(différents traitements,

temps, ...)?

- Composition du microbiome : abondances absolues/relatives
- Diversité du microbiome
 - au sein d'un échantillon (α-diversité)
 - entre les échantillons (β-diversité)
- Distance de Jaccard : basée sur la **présence/absence** de taxa
- Distance de Bray-Curtis : basée sur les **abondances** de taxa
- Distance UNIFRAC non pondérée : basée sur la présence/absence de taxa et la phylogénie
- Distance UNIFRAC pondérée: basée sur les abondances de taxa et la phylogénie

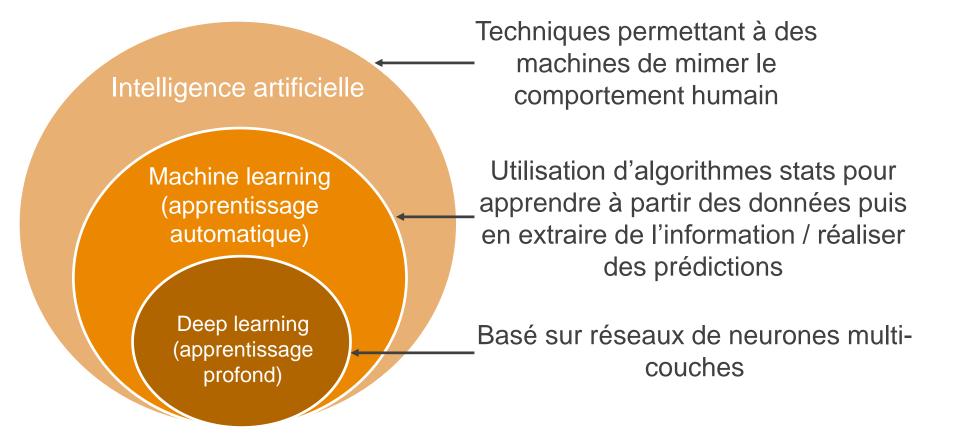


Wong RG, Wu JR, Gloor GB (2016) Expanding the UniFrac Toolbox. PLoS ONE 11(9):e0161196.



Analyse en coordonnées principales (Principal Coordinates Analysis (PCoA)) pour explorer et visualiser les similarités entre échantillons.

Place du machine learning (ML)



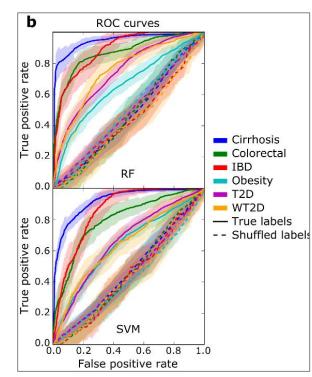
Machine learning (ML) en pratique

 Utilisation : assister les professionnels de santé pour le diagnostic ou le pronostic

vers une médecine des 5P : Préventive, Prédictive, Participative,

Personnalisée et Pertinente

- Algorithmes commun de ML :
 - random forest (forêt aléatoire),
 - SVM (support vector machine),
 - elastic net,
 - LASSO (Least Absolute Shrinkage and Selection Operator),
 - **...**
- Applications liées au microbiome :
 - combiner des informations du microbiote pour prédire l'état de santé actuel ou futur (score ou statut répondeur/non répondeur) d'un individu



Pasolli, E., Truong, D. T., Malik, F., Waldron, L., and Segata, N. (2016). Machine Learning Meta-analysis of Large Metagenomic Datasets: Tools and Biological Insights. *PLoS Comput. Biol.* 12:e1004977.

Introduction

Application: Méthodes

Application: Résultats

Conclusion

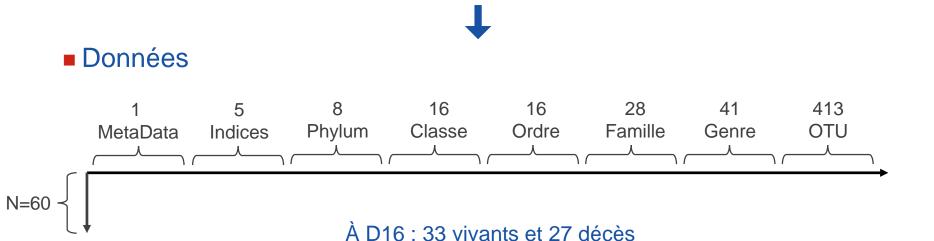
Application à une étude pré-clinique

- Modèle murin (n=60 animaux)
 - Innoculés avec bactérie pathogène causant des diarrhées sévères
 - Soumis à un traitement

■ Objectif: Identifier des signatures taxonomiques bactériennes du microbiote intestinal (taxa et/ou indices d'alpha diversité) issus de données de séquençage ciblé de régions variables du gène de l'ARNr 16S qui prédisent le décès des animaux.

Données

- Données 16S brutes : approche metabarcoding ciblant la région V3-V4 du gène codant pour l'ARNr 16S (technologie Illumina)
 - Normalisation (abondances relatives log-transformées)
 - Variation D3-D0



Analyses

Données étude

Statistiques descriptives

x 6 niveaux

- Phylum
 Famille
- Classe
 Genre
- OrdreOTU

x 2 sets de variables

- Taxa
- Taxa + Indices (Shannon index, Number of observed, OTU, Inverse Simpson index, Unweighted UniFrac distance, Bray-Curtis dissimilarity)

12 jeux de données

x 2 méthodes

- LASSO
- Random Forest

24 modèles

Sélection de variables et importance pour le statut à D16

Qualité de prédiction du modèle

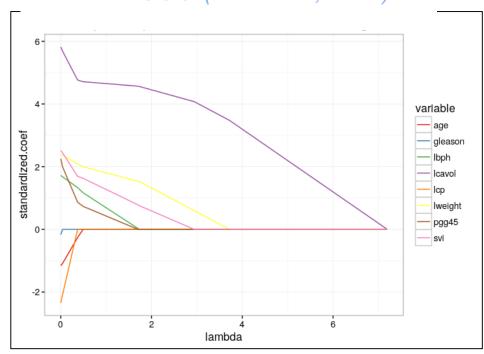
Machine learning

Comment prédire le risque de décès à partir d'une combinaison linéaire de prédicteurs du microbiote intestinal?

Modèle : Régression logistique

$$\log\left(\frac{Proba(d\acute{e}c\acute{e}d\acute{e}\grave{a}J16)}{Proba(vivant\grave{a}J16)}\right) = \beta_0 + \beta_1 Taxon_1 + \beta_2 Taxon_2 + ... + \beta_k Taxon_k$$

- Sélection des variables: pénalisation LASSO (Tibshirani, 1996)
- Réduit le nombre de taxa du modèle en introduisant un paramètre de pénalisation λ
- Le paramètre λ
 - fait tendre vers 0 les coefficients des taxa les moins prédicteurs
 - est calculé par un algorithme d'optimisation minimisant l'erreur de prédiction de décès

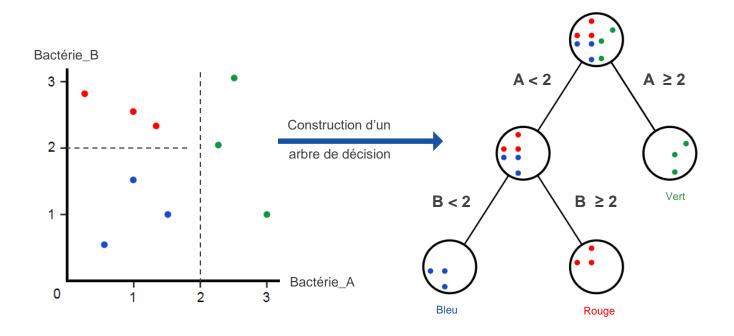


Machine learning

- Random Forest

Comment prédire le risque de décès à partir d'une combinaison d'arbres de décision construits à partir de caractéristiques du microbiote intestinal?

- Algorithme : Random forest (forêt aléatoire) (Breiman, 2001)
 - Tirage aléatoire des individus et d'un sous-ensemble de variables à chaque séparation (noeud).
 - Collection d'arbres de décision.

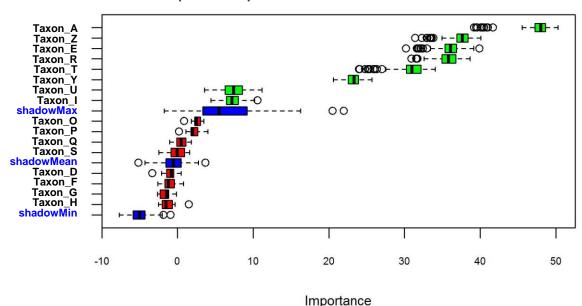


Machine learning

- Random Forest

Comment prédire le risque de décès à partir d'une **combinaison d'arbres de décision** construits à partir de caractéristiques du microbiote intestinal?

- Algorithme : Random forest (forêt aléatoire) (Breiman, 2001)
 - Tirage aléatoire des individus et d'un sous-ensemble de variables à chaque séparation (noeud).
 - Collection d'arbres de décision.
- Sélection des variables : algorithme de Boruta (Degenhardt et al., 2017)
 - Comparaison de l'importance des variables avec des variables aléatoires fictives en utilisant des tests statistiques et plusieurs iterations de forêts aléatoires.





Introduction

Application: Méthodes

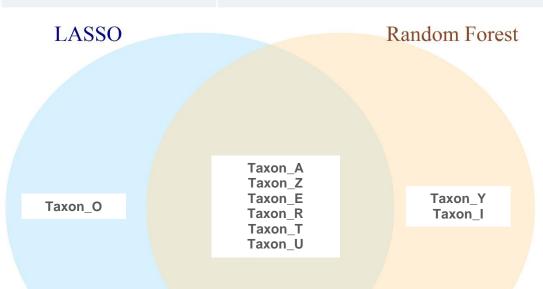
Application: Résultats

Conclusion

- Exemple: Classe

■ Taxa sélectionnés selon les méthodes

Méthode	Nombre de taxa sélectionnés	Taxa		
LASSO	7	Taxon_A, Taxon_Z, Taxon_E, Taxon_R, Taxon_T, Taxon_U, Taxon_O,		
Random Forest	8	Taxon_A, Taxon_Z, Taxon_E, Taxon_R, Taxon_T, Taxon_Y, Taxon_U, Taxon_I		



Rappel taxonomie

Phylum (8)		
Classe (16)		
Ordre (16)		
Famille (28)		
Genre (41)		
OTU (413)		

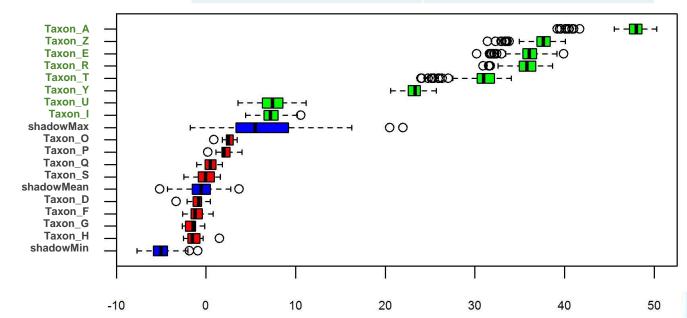
- Exemple: Classe

Informations sur les taxa sélectionnés

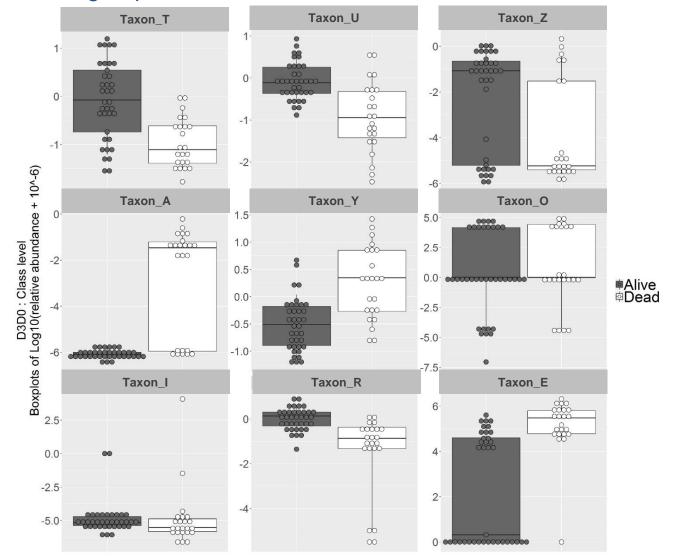
Coefficients LASSO

Taxa	Coefficient		
(Intercept)	-0,070		
Taxon_T	-1,502		
Taxon_Z	-1,387		
Taxon_R	-0,591		
Taxon_U	-0,118		
Taxon_O	0,055		
Taxon_E	0,203		
Taxon_A	0,720		

Importance Random Forest



- Association des variables au statut à D16
 - Boxplot des groupes d'animaux vivants / décédés

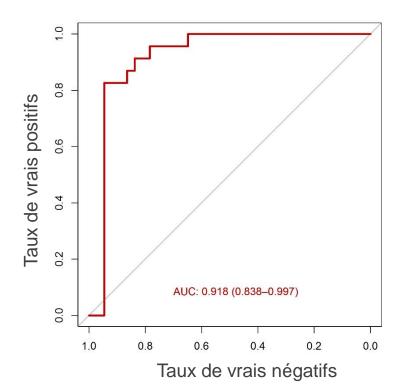


- Exemple: Classe

Évaluation de la qualité de prédiction du modèle

Méthode	Nb taxa	Taxa	AUC	95 % CI AUC
LASSO	7	Taxon_A, Taxon_Z, Taxon_E, Taxon_R, Taxon_T, Taxon_U, Taxon_O,	0.918	[0.838 ; 0.997]
Random Forest	8	Taxon_A, Taxon_Z, Taxon_E, Taxon_R, Taxon_T, Taxon_Y, Taxon_U, Taxon_I	0.881	[0.794 ; 0.967]

Courbe ROC LASSO



- Résumé des différents niveaux taxonomiques

Nombre de variables sélectionnées par chaque modèle et qualité de prédiction :

Variables candidates	LAS Nb var/Nb var total	Random Forest Nb var/Nb var total AUC		
Phylum	5/8	0.886	7/8	0.775
Phylum + Indices	10/13	0.972	10/13	0.797
Classe	7/16	0.918	8/16	0.881
Classe + Indices	13/21	0.976	11/21	0.810
Ordre	7/16	0.918	8/16	0.859
Ordre + Indices	13/21	0.976	11/21	0.824
Famille	9/28	0.989	13/28	0.856
Famille + Indices	11/33	1.000	17/33	0.821
Genre	11/41	0.979	16/41	0.864
Genre + Indices	9/46	0.944	21/46	0.851
ОТИ	18/413	1.000	97/413	0.965
OTU + Indices	20/418	1.000	94/418	0.965

- Bonne qualité de prediction (>0.8) avec les deux méthodes.
- La méthode LASSO a tendance à sélectionner moins de variables (mais ne convergeait pas pour tous les modèles).



Introduction

Application: Méthodes

Application: Résultats

Conclusion

Conclusion

- Méthodes de machine learning
 - Algorithmes d'apprentissage permettant de classer ou prédire.
 - Nombre de variables explicatives >> nombre d'observations.
 - → Adaptées au contexte du microbiome : Nombre de taxa, indices >> nombre d'échantillons, règle de décision complexe.

■ Exemple discuté

- Peut être étendu à d'autres types de données de séquençage (Shotgun).
- La signature peut également intégrer d'autres types de variables (biologiques, génétiques,...).
- La robustesse des algorithmes peut être limitée par la taille d'échantillon et/ou la dépendance des variables → estimer la qualité de prédiction du modèle (validation interne, validation externe).

Challenges

- L'application des méthodes de machine learning aux données du microbiome est récente → restent de nombreux challenges
 - Nombreuses sources de variations : outils bioinformatiques et pipelines, normalisation des données, variabilité entre individus, algorithmes, ...
 - → Design des études et corrélations entre variables (données longitudinales, plusieurs sites de prélèvements,...).
 - → En 2019, création du réseau européen COST (European Cooperation in Science and Technology) Action "ML4Microbiome" (Machine Learning for Microbiome). (Moreno-Indias et al., 2021)

Merci!

biofortis.merieuxnutrisciences.com

