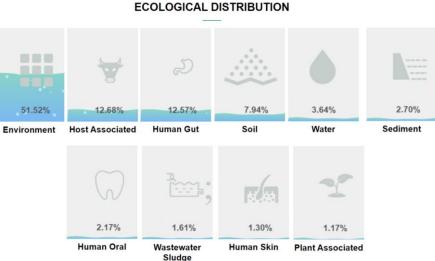
metagenopolis **MGDS**.eu

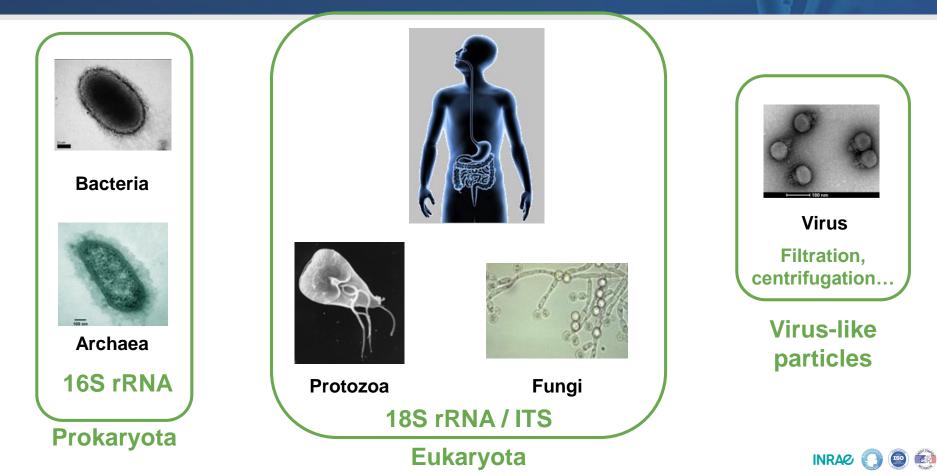
Mathieu Almeida

Chargé de Recherche bioinformaticien

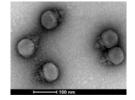
Une caractérisation standardisée à haute résolution du microbiote intestinal pour une meilleure compréhension du lien avec notre santé.


The microbiota exploration enter a new era of Big Data

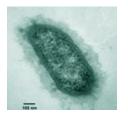
EXPERIMENT TYPE STATISTICS



- Many cohorts and samples coming from various environment.
- Different sequencing strategies, bioinformatic analysis tools...



From targeted exploration to global metagenomic exploration of the human microbiota



From targeted exploration to global metagenomic exploration of the human microbiota

Virus

Bacteria

Archaea

Protozoa

Fungi

Shotgun metagenomics: Random sequencing of all accessible DNA O @ @

HM

MetaGenoPolis leading the International Human Microbiome Standards consortium for benchmarked and best practices in human microbiota exploration

INRAØ 🕥 🐵 🔞

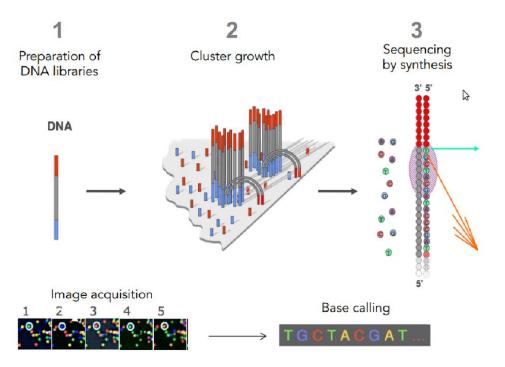
Which sequencing technology for microbial exploration?

Illumina

Ion Torrent

DNBSeq

2nd generation sequencing (short reads)

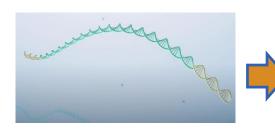

PacBio

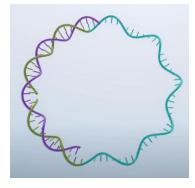
3rd generation sequencing (long reads)

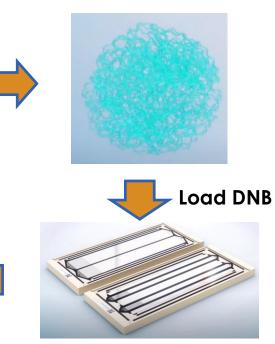
Illumina HiSeq : the most popular

PE reads of 150 bp, up to 6 Tb of data per run (~20 billions reads). DNA amplification by clustering on lane

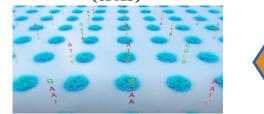
Pro: very accurate, cheap (price per base), very high throughput

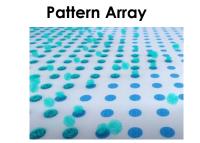

Con: slow (~3 days for a run), short reads.


DNBSeq: the DNA Nano ball avalanche


DNA adaptor ligation

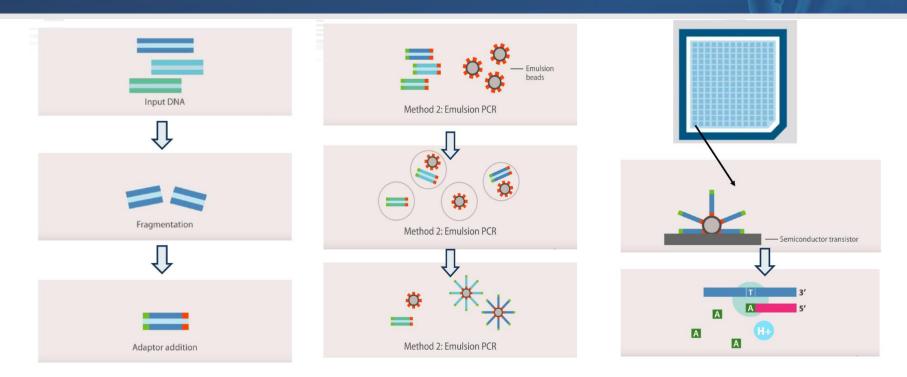
DNA circularization




DNA Nano Ball (DNB)

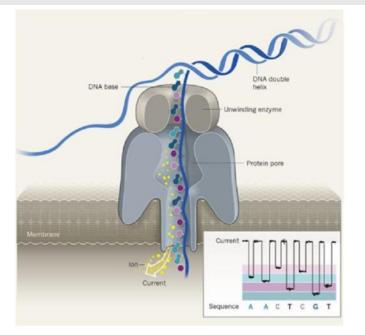
INRA

Combinatorial probe-anchor synthesis (cPAS)



PE Reads of ~150 bp but up to 6 Tb of data per run (~10 billions reads). Pro: accurate, cheap (price per base), very high throughput. Con: short reads.

Ion Torrent S5: cheap and fast

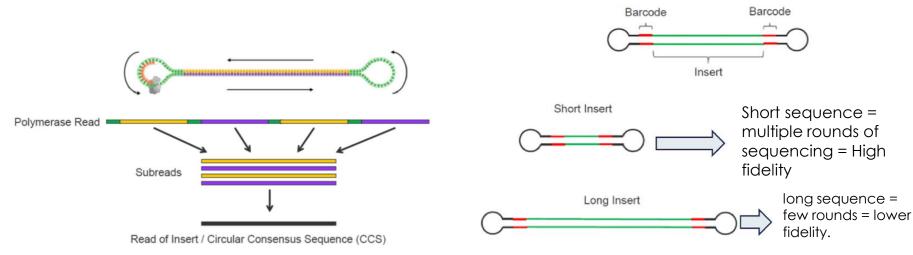


Pro: cheap, short reads of ~200 bp, fast ~3 hours per run Con: in/del errors, average throughput level ~ 50 Gb per run (~ 160 Millions reads)

INRAØ 🚺 👻 🛃

minION : long read sequencing on your bench

Pro : No amplification bias.


cheap and very fast (results in few minutes). long reads (~5 kb).

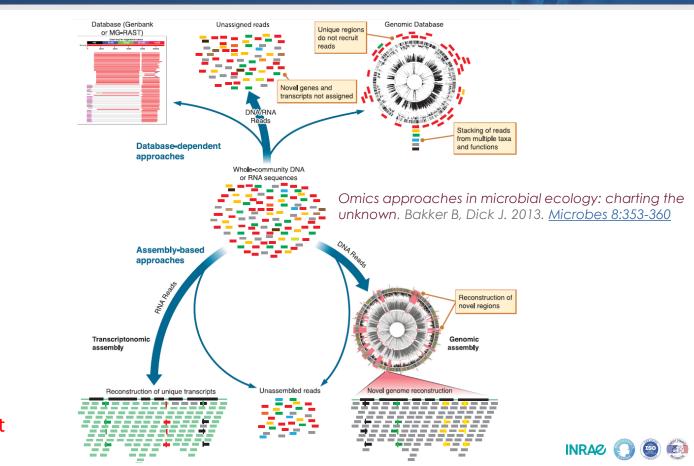
Con : High error rate ~3%. Low throughput : ~20 Gb (~5 Millions reads)

PacBIO Sequel: the war tank

Pro: long reads (> several kb), very accurate. Con: heavy equipment. Low throughput 1.5 Gb per run (~1 Million reads)

INRAe

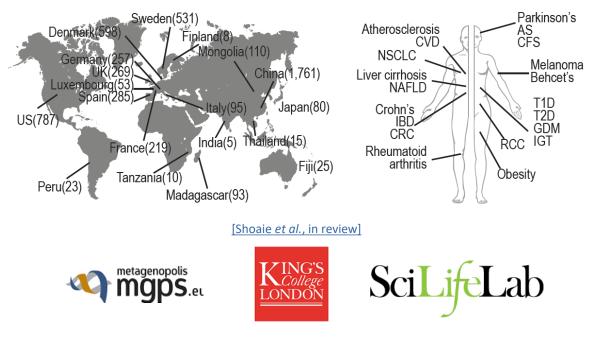
ER


INRA

CAK RIDGE	Sample ID	Sequencing Technology	N. reads after trimming (M)	Total run time	Average read size	Max read size	%Avg identity
	MOCK (N=71 species)	Illumina HiSeq 3000	20.59*2	4d	149	150	99.45
		Ion Torrent S5	28.51	36h	145.76	347	99.61
		DNBSEQ-G400	35.42*2	3d	99.91	100	99.70
Dr. Mircea Podar		DNBSEQ-T7	375.12*2	3d	99.52	100	99.42
Metagenopolis MGPS.et		ONT Minion R9	0.696	48h	4408.41	60869	89.08
		PacBio Sequel II	0.524	30h	10289.7	40278	99.72

- 2nd generation high throughput and high accuracy but short reads
- 3rd generation low throughput and variable accuracy but long reads

Millions of fragments to explore the microbiota


Mapping to references Low computational cost

Genome *de novo* reconstruction High computational cost Exploring thousands of gut microbial samples to identify microbial association with health and disease

INRA

The Human Microbiome ATLAS Project

>5000 gut metagenomic samples coming from 19 countries and exploring 20 diseases.

Deep functional and taxonomical exploration of microbiome in health and disease

All data available on ATLAS website (https://www.microbiomeatlas.org/)

Exploring millions of microbiome with the Million Microbiome of Humans Project (MMHP)

Founding members of the MMHP

BGI华大

Tarolinska INRAØ Danmarks Institutet INRAØ Denmarks Universitet SciLifeLab

Collect and analyse 1 million human microbiota (gut, oral, skin, ...) around the world by 2025.

Started 2019, 5 founding members, including MetaGenoPolis.

Metadata and samples accessible each year

https://db.cngb.org/mmhp/

National citizen contribution aiming at collecting 100,000 faecal samples & associated nutritional and clinical data by 2025 to:

- Define the heterogeneity of the French gut microbiomes
- Identify the environmental and lifestyle factors driving microbial composition and their deviations in diseases

Le French Gut: Overview

Some other MetaGenoPolis publications

Cancer

2018: Routy et al. Science, Microbiome and epithelial cancer immunotherapy
2018: Gopalakrishnan et al. Science, Microbiome and melanoma cancer immunotherapy

2020: Derosa et al. **European Urology**, Microbiome and Resistance to Cancer Immunotherapy in Renal Cell Carcinoma Patients

Metabolic disorders

2012: Qin et al. **Nature**, Type II Diabetes

2013: Le Chatelier et al. **Nature**, Richness of gut microbes and metabolic markers

2014: Qin et al. **Nature**, Human gut microbiome alterations in liver cirrhosis

2015: Qin et al. **Nature**, Accurate liver cirrhosis diagnostic

2015: Forslund et al. **Nature**, Drug confounders in microbiome analysis **2016:** Pedersen et al. **Nature**, Microbiome & insuline resistance

2020: Vieira-Silva et al. **Nature,** Microbiome and Statin therapy **2021:** Malard et al. **Nature Com**, Leukemia and autologous fecal tranfer

Diet

2011: Arumugam et al. **Nature**, Enterotypes

2013: Cotillard et al. **Nature**, Impact of diet on gut microbiome

2013: Le Chatelier et al. **Nature**, Richness of gut microbes and metabolic markers

2019: Cox et al. **Gastroenterology**, Low FODMAP Diet in Inflammatory

Bowel Disease patients **2020**: Meslier et al.

Gut, Beneficial effects of Mediterranean diet

Antibiotic resistance

2019: Ruppé et al. **Nature Microbiology**, Prediction of the intestinal resistome

Technologies

2010: Qin et al. **Nature**, The human gut reference catalogue

2013: Sunagawa et al. **Nature Methods**, Universal phylogenetic markers

2014: Nielsen et al. **Nature Biotech**, Method for identifying metagenomic species

2014: Li et al. Nature Biotech, 10 millions genes reference catalog
2015: Xiao et al. Nature Biotech, A mouse gut gene catalogue
2016: Xiao et al. Nature Microbiology, A pig gut gene catalog
2017: Costea et al. Nature Biotech, Standards for microbiome studies
2018: Plaza Onate et al., Bioinformatics, Reconstitution of metagenomic pangenome species
2020: Herold et al. Nature Com, Time series meta-omics in dysbiosis

INRAØ 🕥 🕑 🔞