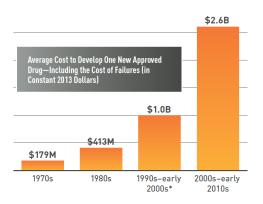


Micro-physiological models and other innovative in vitro systems for toxicity evaluation of new drugs - a Pharma Industry perspective -

> Philippe Detilleux, DVM, PhD, DACVP Global Head Preclinical Safety, Danofi R&D


With the help of Piyush Bajaj, Bruno Biton, Nicolas Redon and Karissa Adkins

Key metrics about drug discovery and challenges for the pharma industry

- Average cost to develop one new drug \$2.6B
- Time needed to develop a new drug 13.5 years
- ¹9-11 NMEs are needed in Phase I to have one successful launch
- Only 2 of 10 marketed drugs return revenue that exceeds its R&D costs
- ¹Attrition rates:
 - Phase I 46%
 - Phase II 66%
 - Phase III 30%

SANOFI 🗸

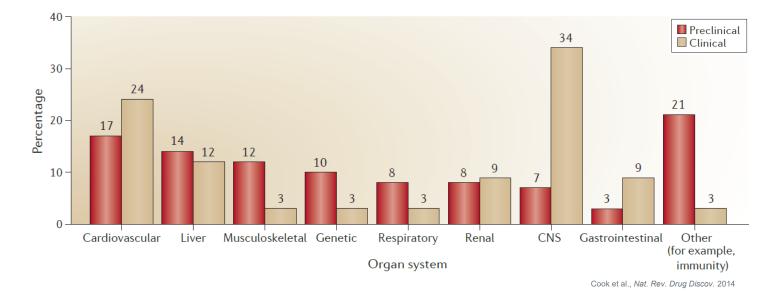
- Current models do not successfully recapitulate human biology
 - Animal models systemic but cannot predict human
 - · Conventional 2D models neither systemic nor organotypic
- Better models are needed!

2016 PhRMA profile

¹Paul et al., Nat. Rev. Drug Discov. 2010

Major reasons for failure in the pharma industry: Safety and Efficacy

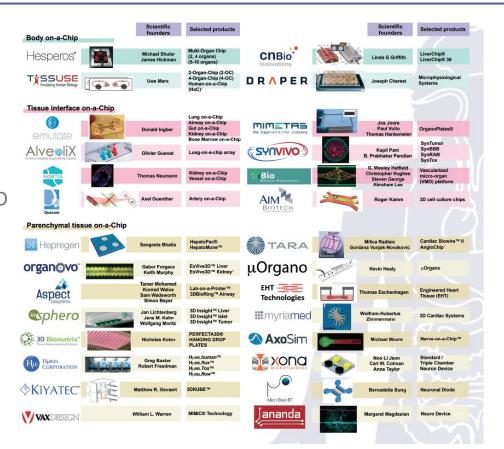
	Table 1 Populations of the primary cause of failure categories for terminated compounds*										
	Termination reason	Overall	Period		Phase						
			2000–2005	2006–2010	Candidate nomination	Phase I	Phase II				
2	Clinical safety	68 (11%)	48 (13%)	20 (8%)	5 (1%)	40 (25%)	22 (25%)				
3 1 ~40% in 1990s	Commercial	40 (7%)	23 (6%)	17 (7%)	26 (7%)	10 (6%)	4 (4%) 31 (35%) 0				
	Efficacy	55 (9%)	45 (11%)	10 (4%)	10 (3%)	14 (9%)					
	Formulation	9 (1%)	4 (1%)	5 (2%)	8 (2%)	1 (0.6%)					
	Non-clinical toxicology	240 (40%)	144 (40%)	96 (40%)	211 (59%)	21 (13%)	7 (8%)				
	Patent issue	1 (0.2%)	0	1 (0.4%)	1 (0.3%)	0	0				
	Pharmacokinetics or bioavailability	29 (5%)	19 (5%)	10 (4%)	3 (0.8%)	25 (16%)	1 (1%)				
	Rationalization of company portfolio	124 (21%)	46 (13%)	78 (32%)	75 (21%)	29 (18%)	19 (21%)				
	S Regulatory	2 (0.3%)	2 (0.6%)	0	1 (0.3%)	1 (0.6%)	0				
	Scientific	33 (5%)	28 (8%)	5 (2%)	13 (4%)	15 (10%)	5 (6%)				
	Technical	3 (1%)	3 (1%)	0	2 (0.6%)	1 (0.6%)	0				
	Other	1 (0.2%)	0	1 (0.4%)	1 (0.3%)	0	0				
	Total	605	362	243	356	157	89				


Table 1 | Populations of the primary cause of failure categories for terminated compounds*

*Table entries for each column indicate the total number and the percentage in parentheses.

Waring et al., Nat. Rev. Drug Discov. 2015

Organ systems often involved with safety related failures



Above chart is AZ specific, but similar trend in the pharma industry

ADVANCED PHYSIOLOGICALLY-RELEVANT MODELS/MPS

- Organ-on-a-chip: Microfluidic devices (2D/3D) with physiologically relevant perfusion
- Organoid/spheroid: 3D single or multi-cell aggregates of stem cells/primary cells
- <u>Co-culture or</u> <u>engineered</u>: 2D cocultured with ECM proteins or cellular microenvironments

Partnerships between pharma industry and MPS companies

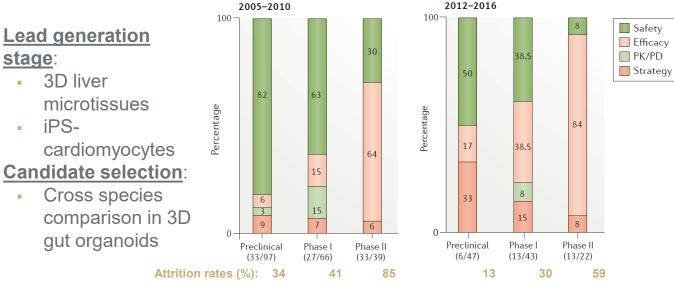
What advanced models cannot do, anytime soon ...

Living organ-on-a-chip could soon replace animal testing

By Sebastian Anthony on June 22, 2012 at 8:03 am 24 Comments

The FDA just struck a deal that could replace animal testing with a tiny chip

f (@)


Lydia Ramsey Apr. 11, 2017, 1:07 PM

30 NOVEMBER 2018 COMMENT Will organs-on-a-chip put an end to animal testing?

SHARE 🏾 🎓

What advanced models can do: improvement in safety!

Morgan et al., Nat. Rev. Drug Discov., 2018

SANOFI 🎝

Application of 5R's strategy from AZ

Use of Advanced Models in Pharmaceutical Safety Assessment

More in research than in Development

- More for Internal decision making than for Regulatory submission
- More to increase mechanistic understanding than for compound screening
- · Occasionally submitted in regulatory dossier to complement

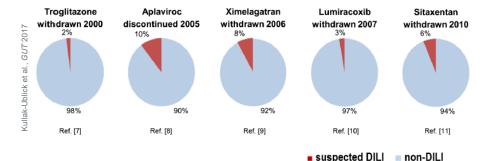
Points to be considered when developing an advanced model

- Context of use (stage, throughput)
- End-point analysis (Imaging, molecular, analytical, biomarker)
- Ease of use and Cost
- Performance characterization (validation set, number of publications)
- Robustness and reproducibility
- Ability to run multi-species studies
- Translation potential
- Allometric scaling

Hepatotoxicity and drug induced liver injury (DILI)

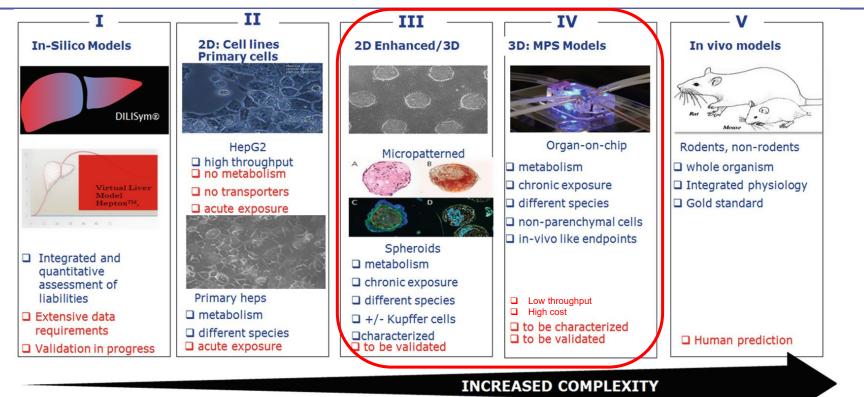
- DILI is one of the most frequently cited reasons of drug attrition in the pharmaceutical industry
 - Black-box warning
 - Post-market drug withdrawals
 - ~18% or 81 of 462 cases from 1953 2013¹

Differences in drug handling between the pre-clinical species and humans


• Two human toxicities with the poorest correlation to animal studies are hepatic (<60%) and hypersensitivity (<40%)²

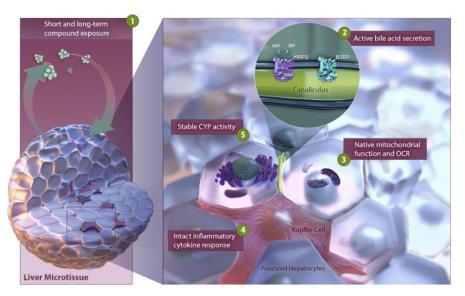
2 types of DILI

SANOFI 🏹

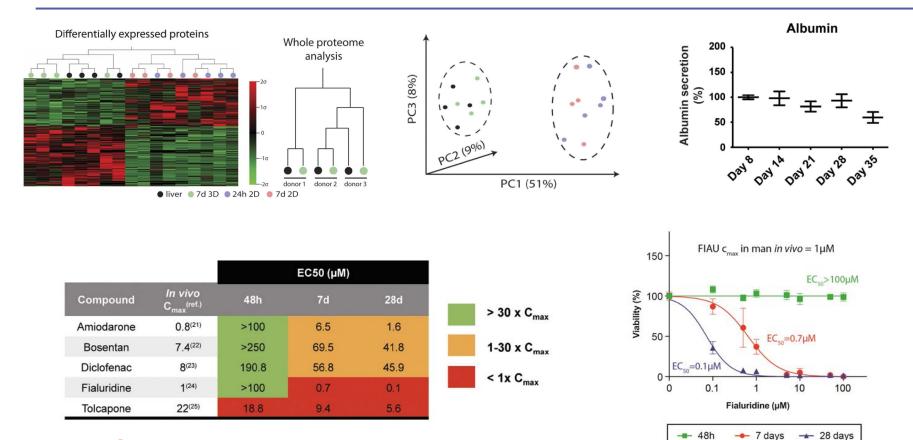

- Intrinsic (Type A) dose dependent, often reproducible in animals, innate immune system involved (APAP)
 - Dose is the "poison"
- Idiosyncratic (Type B) may not be dose dependent, often not reproduced in animals, innate and adaptive immune system involved, occurs in 1/1000 1/10,000

Current approaches to predict/de-risking DILI

Status and Future of 3D Cell Culture in Toxicity Testing


Illustrated by Freddy Van Goethem, Janssen Pharmaceuticals, with permission

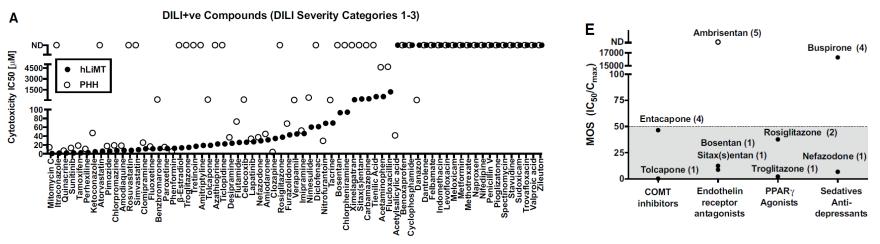
Monicah A. Otieno, Jinping Gan, and William Proctor


Minjun Chen and Yvonne Will (eds.), Drug-Induced Liver Toxicity, Methods in Pharmacology and Toxicology, https://doi.org/10.1007/978-1-4939-7677-5_12, © Springer Science+Business Media, LLC, part of Springer Nature 2018

3D liver spheroids as an in vitro tool for testing of hepatotoxicity liabilities

- Liver spheroids are 3D balls of hepatocytes with nonparenchymal cells (Kupffer cells, LSECs) composed of about 1200 - 1500 cells and about 250 -300 µm in diameter
- Stable and long term (28-days) CYP activity and presence of relevant transporters (OATPs, BSEP, MRPs, etc.)
- Ability to do other mechanistic endpoints such as GSH depletion, ROS generation, bile acid modulation, etc.
- Responsive to inflammatory cytokines LPS
- Studies with short (7-day) and long (≥14-day) term compound exposures possible
- Cross-species possible as well (rat, dog, cyno)

3D liver spheroids are "closer" to the in vivo liver

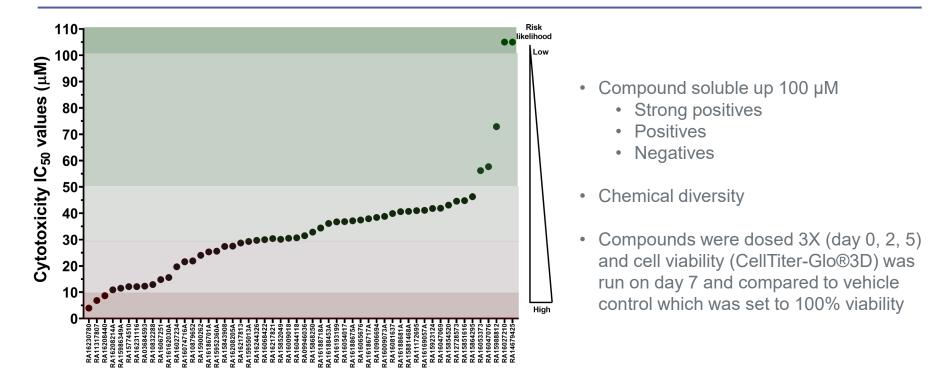


SANOFI 🎝

13

Bell C., et al., Sci. Rep. (2016)

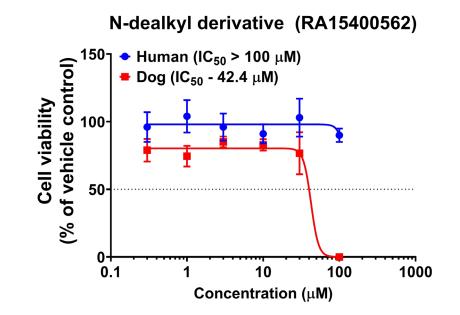
3D liver spheroid models for testing hepatic liability of drugs


Table 2 Assay performance for PHH and hLiMT described based on	pre-defined cytotoxicity IC ₅₀ thresholds
--	--

Assay	Number DILI+ve	Number DILI-ve	ТР	TN	FP	FN	Threshold (μM)	Sensitivity (%)	Specificity (%)	PLR	NLR	Kappa	P value
2D PHH IC ₅₀ [μM]	69	41	3	40	1	66	10	4.3	97.6	1.78	0.98	0.014	0.61
	69	41	12	38	3	57	25	17.4	92.7	2.38	0.89	0.080	0.004
	69	41	20	37	4	49	50	29.0	90.2	2.97	0.79	0.177	0.007
	69	41	23	35	6	46	100	33.3	85.4	2.28	0.78	0.176	0.014
3D hLiMT IC ₅₀ [µM]	69	41	13	38	3	56	10	18.8	92.7	2.57	0.88	0.091	0.097
	69	41	26	36	5	43	25	37.7	87.8	3.1	0.71	0.215	0.004
	69	41	36	35	6	33	50	52.2	85.4	3.57	0.56	0.331	0.0001
	69	41	42	35	6	27	100	60.9	85.4	4.16	0.46	0.419	< 0.0001

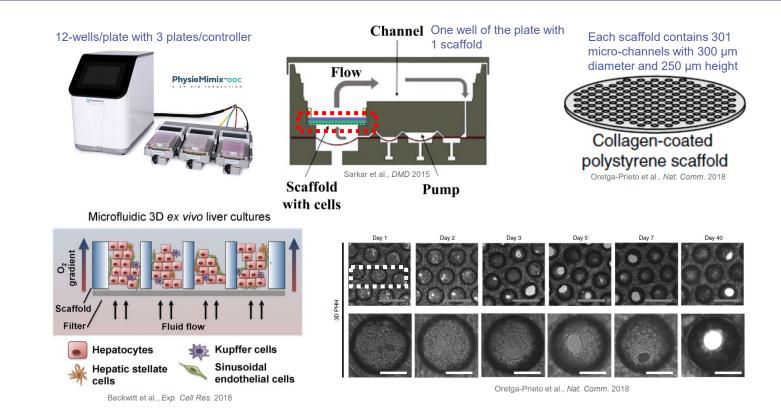
TP true positive, TN true negative, FP false positive, FN false negative, PLR positive likelihood ratio, NLR negative likelihood ratio, Kappa Cohen's kappa concordance value

3D liver spheroids can be applied as a ranking tool for Sanofi programs



15

Screening performed in media containing 1% BSA to improve solubility


We are also working with IDD chemists to further "qualify" the model with internal Sanofi and marketed compounds

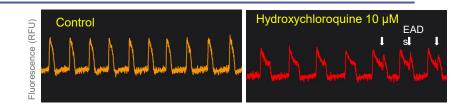
Cross-species testing using 3D liver spheroids

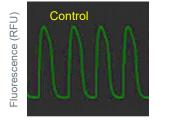
Dog liver spheroids are more sensitive to the lead as well as the N-dealkyl metabolite compared to human liver spheroids

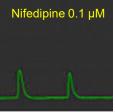
In vitro liver model with re-circulating media – ability to introduce adaptive immune cells (PBMCs)

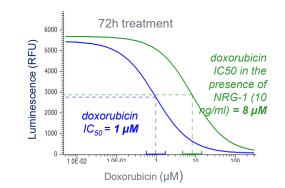
Human IPSC-derived cardiomyocytes for early cardiosafety assessment

Detection of torsadogenic/arrhythmogenic effects:

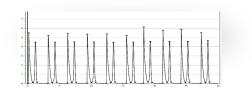

- Action potential recording
- Voltage-sensitive dye FluoVolt[™]/Pluricyte[™] cardiomyocytes/384 well plate format.
- Assay sensitivity/specificity comparable to Purkinje assay


Detection of calcium homeostasis perturbation


- · Calcium transient recording
- Calcium-sensitive dye Cal520/Pluricyte™ cardiomyocytes/384 well plate format.
- Detection of compounds perturbating calcium entry, sequestration and release.

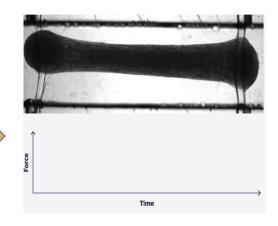

Detection of cardiotoxic effects

- Cellular ATP content measurement
- CellTiter Glo™ luminescent assay/Axol cardiomyocytes/384 well plate format. Repeated treatment, typically, 48/72h.
- Detection of non specific cellular toxicity with involvement of protective pathway such as HER2 signaling.
 SANOFI



hIPSC-derived CMs: 2D and 3D models for contractility assessment

hiPSC-CM (Pluricyte™) monolayer 2D


Cell Motion Imaging System SI8000 (SONY)

SANOFI 🎝

Contractility is the most integrated parameter indicating a potential cardiotoxicity.

- 2D model give access to higher throughput and high selectivity.
 - Inactive compounds confirmed in a 3D model, with a better detection of positive inotropes

Engineered Heart Tissue (3D) Cardiotype/Biowire™ II platform. Tara Bisosytems

https://tarabiosystems.com/

THANK YOU!

