

Les apports du séquençage long read en génomique

Les technologies « long read »

Librairie hétérogène

(shotgun sequencing)

Séquençage direct

(Single molecule)

Qualité des reads

Longueur max des reads

Comparaison des différentes générations de séquençage

« Sanger »

1ère génération

Non

Non

Haute

900 pb

Illumina Thermo Fisher

2^{ème} génération

Oui

Non

Haute

300 pb

Pacific Biosciences

3^{ème} génération

Oui

Oui

Moyenne
Haute (PacBio Hifi)

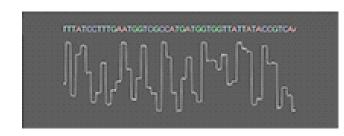
100 kb (PacBio) >**1Mb** (ONT)

Le séquençage de 3^{ème} génération

Oxford Nanopore Technologies (ONT)

(450bps)

Nanopore


Principe:

Mesure du changement d'intensité du courant ionique passant à travers un pore lors de la translocation d'une molécule d'ADN (ou ARN)

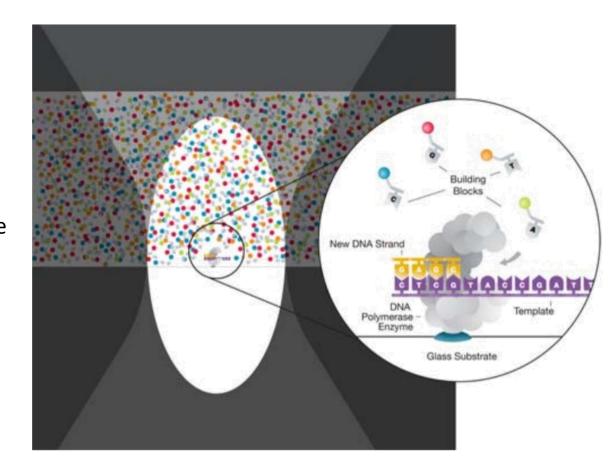
Moteur

Qualité des lectures : Médiane à 95% Mais... nouvelle chimie à 99%

Longueur des reads théoriquement illimitée

Séquençage en direct

Membrane (polymère synthétique)


Le séquençage de 3^{ème} génération

Pacific Biosciences (PacBio)

Principe:

ADN polymérase fixée au fond d'un puit

Détection de la fluorescence à chaque insertion de nucléotide

Le séquençage de 3^{ème} génération

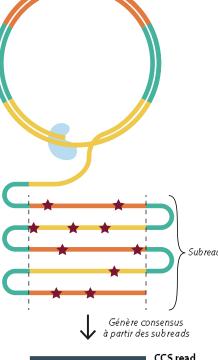
Pacific Biosciences (PacBio)

Continuous Long Read (CLR)

Continuous Long Read (CLR):

Obtenir les plus longs fragments possible, une seule lecture par fragment

→ Fragments long mais qualité de séquence moyenne (~85% identité)


Circular Consensus Sequence (CCS ou Hifi)

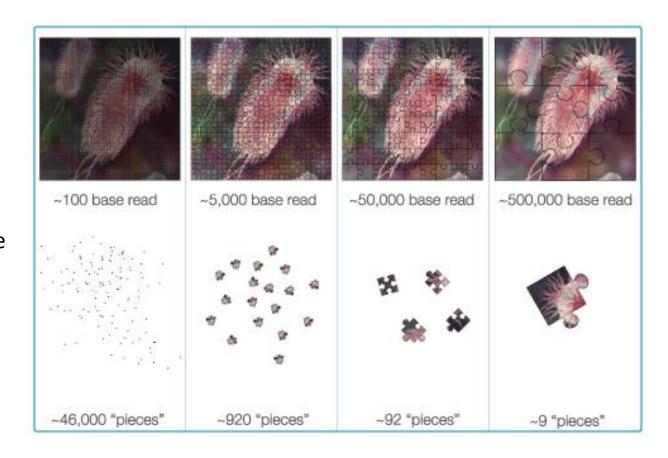
Obtention d'une séquence consensus pour chaque fragment, plusieurs lectures par fragment

→ Fragments plus courts (10kb) mais de meilleure qualité (>99.9% identité)

🛊 Erreur de séquençage

Circular Consensus mode (CCS)

2 Génomes complets et assemblage *de novo*

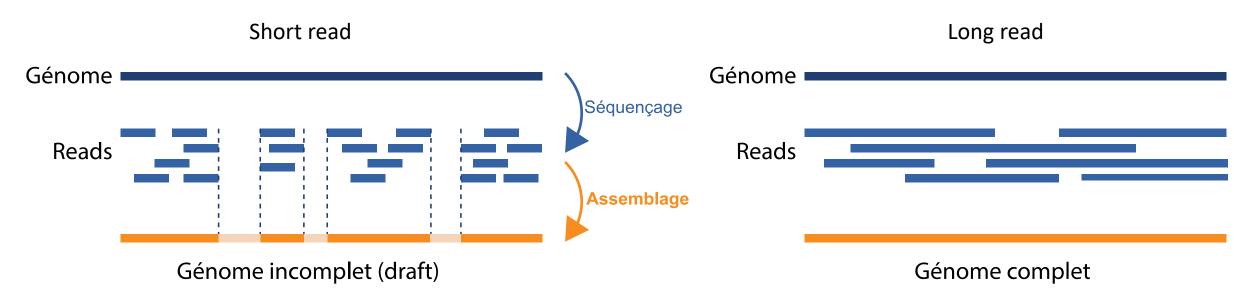


Assemblage de novo

Reconstruire le génome uniquement à partir des reads, sans se baser sur une référence.

→ Vision la plus complète et moins biaisée d'un génome

→ Long read = permet d'assembler plus facilement des génomes complets



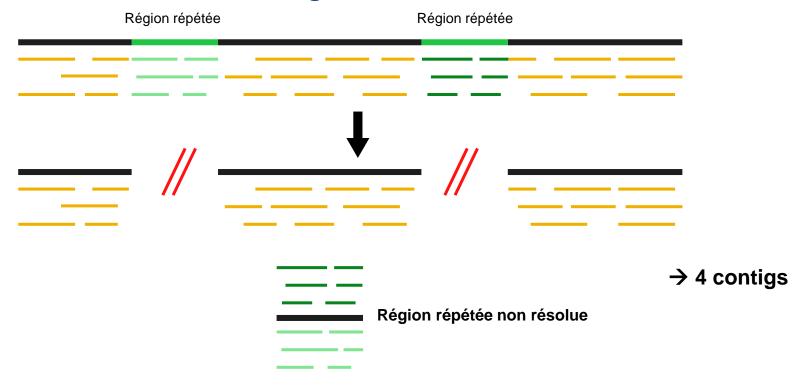
Rasemblage de novo

Assemblage de novo

→ Information manquante, génome fragmenté, apparition de gaps dans l'assemblage

→ Vision complète de l'architecture du génome, de sa composition fonctionnelle et structurelle

→ Pourquoi les assemblages avec des short reads sont-ils plus fragmentés ?

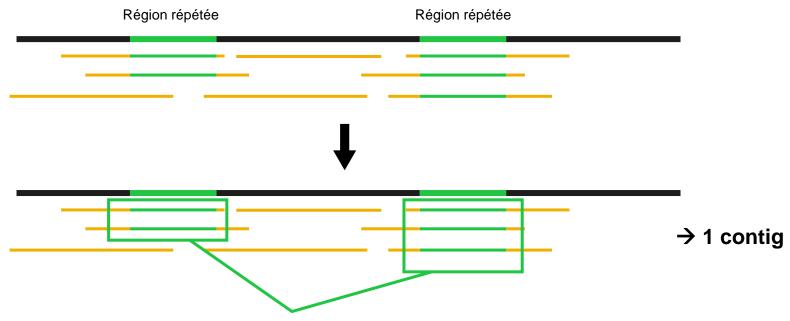


Programbiano de noto

Short read et assemblage

Impact des répétitions lors de l'assemblage

Impossible d'ancrer les répétitions dans leur contexte en amont et en aval


→ Création de points de cassure de l'assemblage

Long read et assemblage

Utilité des long reads

Répétions ancrées dans leur contexte génomique en amont et en aval

→ Répétition résolues

Condition sine qua non pour résoudre une région répétée :

Longueur des reads > longueur de la région répétée

Obtention de génome de référence : Cas du génome humain

Vers des génomes complets : 1ère génération

Human Genome Project (1990-2003)

But : obtenir un génome de référence pour l'Homme (méthode Sanger)

3 Milliards d'euros

13 ans

Consortium international

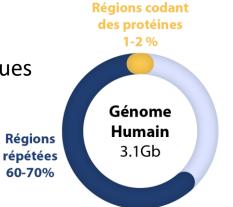
Révolution pour la génomique

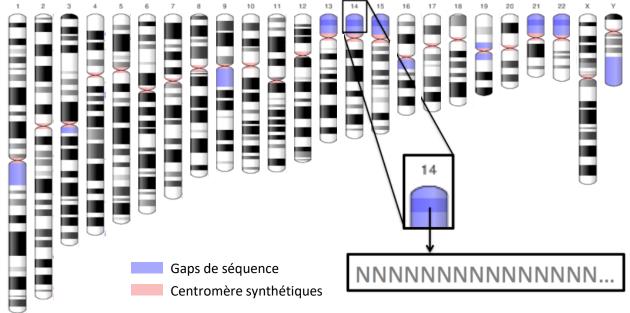
Bonne couverture des séquences géniques mais moins le reste → Mais... Enormément de gaps, « seulement » 2,5 Gb déterminées

Vers des génomes complets : 2ème Génération

Genome Reference Consortium

Travaille depuis 20 ans à l'amélioration de la version initiale Désormais en version GRCh38.p14


Toujours de grandes régions manquantes :


Centromères (séquences synthétiques)

Régions péricentromériques

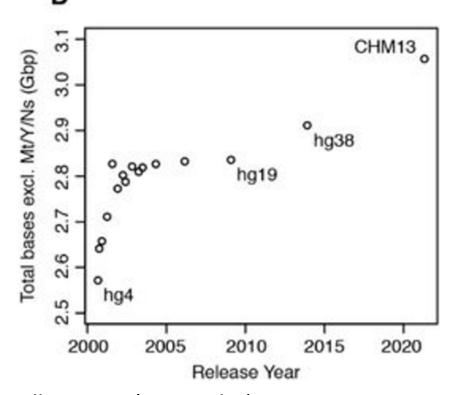
Bras p chromosomes acrocentriques

→ Correspondent à des régions répétées

Vers des génomes complets : 3^{ème} génération

Novel bases (Mbp)

Telomere-to-Telomere Consortium


But : obtenir la séquence complète et sans gap du génome humain

Combinaison de plusieurs techniques

Ultra long read nanopore

PacBio Hifi (CCS)

+ autres méthodes (Hi-C, mapping optique)

Grâce aux technologies long read (et beaucoup de validations manuelles et expérimentales) :

- Ajout de près de 200Mb
- Résolution des gaps du GRCh38 : Centromères, Chr acrocentriques, etc.
- Manque encore chromosome Y...(lignée cellulaire utilisée homozygote XX)

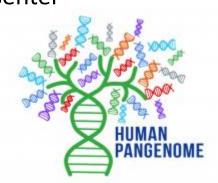
Enjeux en santé humaine

Détection de nouvelles associations variant / maladie

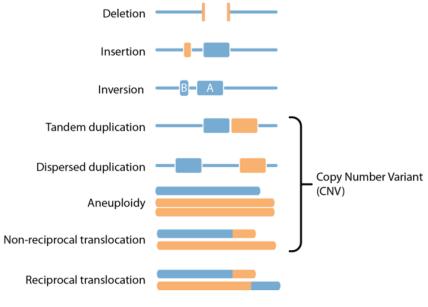
Répétome =/= junk DNA (ADN poubelle)

Variations dans des régions répétées impliquées dans cancer, diabetes, Trouble du spectre autistique, maladies mentale (schizophrénie et dépression)

Variants structuraux


Possible avec short read mais plus robuste avec long-read Détection de variants complexes

Enrichissement du génome de référence pour représenter


l'espèce entière (pangénome)

Diagnostic et prognostic égal pour toutes les populations

Variants structuraux

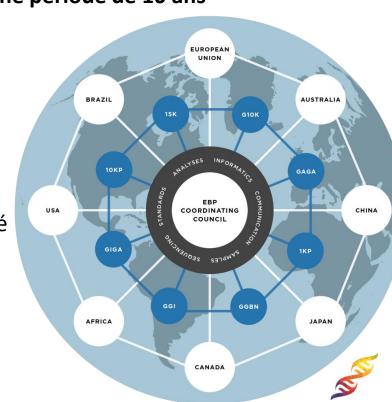
• Autres exemples d'applications

Vers une vue complète et non biaisée de la diversité naturelle

Earth BioGenome Project

Obtention de génomes complets pour 1,5 millions d'espèces eucaryotes sur une période de 10 ans

Buts:

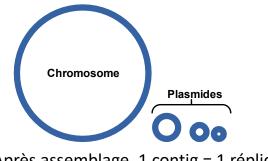

Compréhension globale des mécanismes d'évolution

Conservation, protection et restauration de la biodiversité

- Compréhension du fonctionnement des écosystèmes dans leur globalité

Apports à l'amélioration de la société et le bien-être humain

- Création de nouveaux biomatériaux, biofuels synthétiques
- Nouvelles molécules thérapeutiques



Applications en microbiologie

Facilité d'obtention de génomes complets circularisés

- Génomes de référence
- Caractérisation de souches d'intérêt industriel

Après assemblage, 1 contig = 1 réplicon

Vérification de plasmides

Possibilité d'obtenir la séquence de plasmides rapidement (<2h) avec un coût maîtrisé

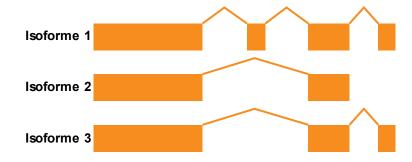
Métagénomique ciblée

Séquençage de l'ADN ribosomique 16S dans son intégralité (1,6kb) = meilleure résolution taxonomique

Métagénomique shotgun

Obtention de génomes complets à partir d'échantillons complexes!

Trancriptomique


Séquençage de transcrits complets

Assemblage *de novo* de transcriptome

Découverte de nouvelles isoformes

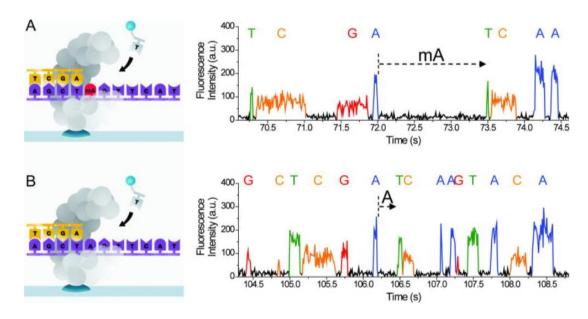
Analyse d'expression d'isoformes (différentielle ou non)

Détection de gènes de fusion

Epigénétique

Comment détecter des bases modifiées ?

3^{ème} génération séquence sur une molécule native


→ Pas d'amplification PCR, rétention de toute l'information épigénétique sans préparation particulière de l'échantillon

Base modifiée = Encombrement stérique plus important

PacBio → Temps plus long pour incorporer la base suivante ONT → Signature électrique différente au passage d'une base modifiée

+ capacité de lecture modification ARN ! (lecture directe ARN)

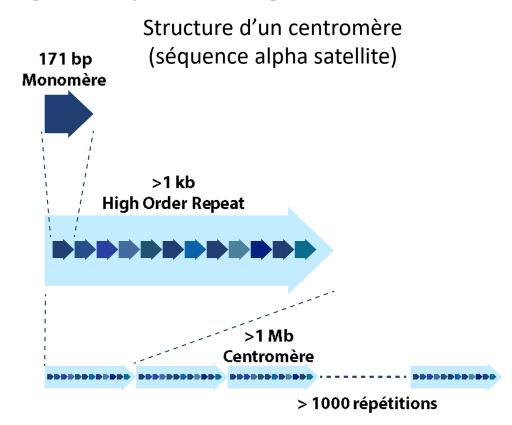
→ Utilité également pour le phasing de génomes (ploïdie >1n) afin de retrouver des haplotypes complets

Conclusion

- Permet d'améliorer des génomes incomplets (draft)
 - Augmentation de la contiguité (moins de contigs)
 - Meilleure compréhension de la structure des génomes
- Permet l'obtention de génomes complets et contigus pour n'importe quel organisme
- → Parfois besoin de corriger les séquences par un « polishing » avec short reads
- Lecture de molécules natives permet détection de bases modifiées
- Technologies toujours en cours d'amélioration, arrivée prochaine de « nouveaux » acteurs (Illumina Infinity)
- Également possibilité de faire du séquençage avec des long read synthétiques (LoopSeq, TellSeq, etc.) basé sur des technologies NGS.

Merci de votre attention

Siège social 1 rue du Pr. Calmette 59000 Lille FRANCE 03 62 26 37 77 contact@genoscreen.fr www.genoscreen.fr



Pourquoi ces gaps « résistent-ils » au séquençage ?

Régions répétées du génome

Oxford Nanopore Technologies (ONT)

Pacific Biosciences (PacBio)

Taille des lectures

Théoriquement illimitée

50-100 kb CLR / 10-15 kb CCS

Fidélité

Erreurs systématiques dans homopolymères = couverture ne résout pas le problème

Erreur aléatoire : permet avec CCS (HiFi) d'obtenir reads quasi parfait

Lecture directe

Bases modifiées (méthylation) lecture directe ARN

Bases modifiées (ADN seulement)

Matériel de départ

Longueur et quantité des lectures dépendants de la qualité du matériel extrait (ADN/ARN)

Quantité et qualité du matériel génétique très importants

Analyse en directe

Basecall en temps réél «Adaptive sampling»

Film en direct mais analyse a posteriori

Coût

Coût avantageux pour des projets de petite et moyenne taille

Si CCS, permet de se passer de Illumina pour corriger

Métagénomique ciblée

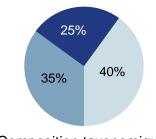
Qui est là?

Autre nom : Metabarcoding


But:

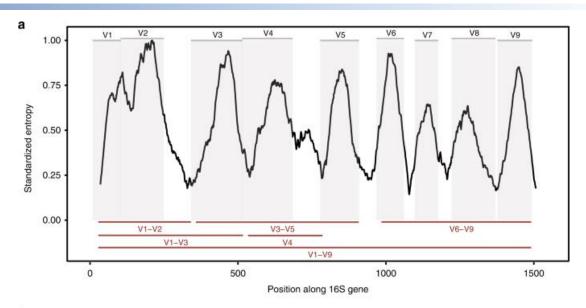
Informe sur la structure et la composition de la population

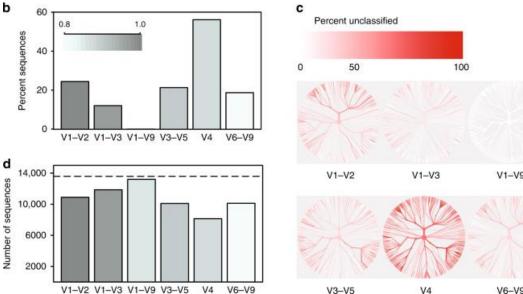
Principe:



Composition taxonomique de l'échantillon

Métagénomique ciblée


Cible ARN ribosomique 16S (18S chez eucaryotes) Taille totale 1 600 pb

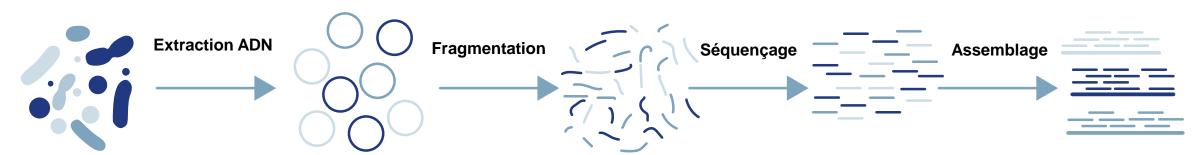

Séquençage de 2^{nde} génération : Séquence qu'une partie du 16S (max 300 pb) = perte d'information

→ Résolution possible de la taxonomie jusqu'au genre

Séquençage de 3^{ème} génération : séquence complète du 16 (voir même plus)

- = conservation de toute l'information
- → Résolution taxonomique jusqu'à l'espèce

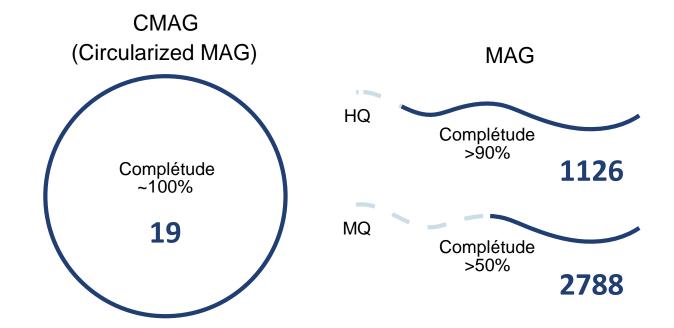
Métagénomique shotgun


Qui peut faire quoi ?

Buts:

- Informe sur le **potentiel fonctionnel** et **physiologique** des organismes en présence (Gènes / Voies métaboliques)

Principe:


Métagénomique shotgun

Metagenome Assembled Genomes

23 sites de prélèvement de stations d'épuration

d'épuration (

Grâce au long read : **3733** MAGs assemblés

