

Role & challenges of industrial biotech in the transition towards a low fossil carbon future

Lorie Hamelin Researcher, PI of the Make our Planet Great Again project Cambioscop

🂓 @hamelinlab

hamelin@insa-toulouse.fr

www.toulouse-biotechnology-institute.fr

Context: the role

Doing all we do now ... without fossil C?

HFCs, PFCs, SF6, NF3

2%

N2O 6%

Emergency to stabilize global mean annual surface temperatures

- Limiting warming to 1.5°C requires:
 - Reducing GHGs by 45% (40-60%) by ~2030 (vs 2010 levels) ...
 and to <u>ZERO by ~2050 (2045-2055)</u>
- Limiting warming to below 2°C requires:
 - Reducing GHGs 20% (10-30%) by ~2030 (vs. 2010 level) ... and to ZERO by ~2075 (2065-2080)

Source: All elements of this slide are retrieved and/or adapted from IPCC SR1.5 report. https://www.ipcc.ch/sr15/

0.7

0.78

0.8

0.9

1.03

1240

1440

1480

1720

1960

2030

~1.75 °C

900

1040

1080

1260

1450

1500

800

980

1130

1170

Paris agreement: a delicate balance

Recognizing that "climate change represents an urgent and potentially irreversible threat" to humanity, the Paris Agreement calls for limiting global average temperature to well below 2°C above pre-industrial levels. It also calls for a "balance between anthropogenic emissions by sources and removals by sinks of greenhouse gases in the second half of this century".

Seems we are really going there...

Global divestment database

What kinds of institutions are divesting?

DRIVING AMBITIOUS CORPORATE CLIMATE ACTION

Context: the challenges

The challenges of biotech – seen from an environmental scientist

The land challenge

Global outlook on land use

12.5 Gha of land area on Earth*:

•4.5 Gha agricultural land

- 1.4 Gha arable land;
- 3.1 Gha pastures

•4.9 Gha forest

- ~1.6 Gha primary forest;
- ~ 0.3 Gha plantations;
- 2.9 Gha naturally regenerated;

•3.1 Gha other land

- 1.7 Gha uncultivable (permanent snow, water);
- 0.08 Gha rest (urban)
- 1.4 Gha shrub

Land Use Changes: case of crops

COMMENT · 27 MARCH 2019

for the Amazon

Why the US-China trade war spells disaster

An analysis of global soya-bean production forecasts massive

Co-products : acknowledged prioritization in circular economy

Feedstock examples

Treatment examples Least I

Fig. 1. Updated hierarchy for food surplus and waste proposed herein building on terminology from major European and national projects (UNEP, 2014; WRAP, 2013; FUSIONS: Östergren et al., 2014). *#FV fresh fruits and vegetables.

Fluctuating power challenge

The opportunities of more fluctuating power

France: from 20-65% fluctuating power in 2050 (Ademe, 2017)

Cambioscop: what we do

Cambioscop

► Cutting-Edge Research

French president's climate talent search nabs 18 foreign scientists

By Elisabeth Pain | Dec. 11, 2017 , 2:00 PM

http://cambioscop.cnrs.fr

The interconnected vision of our economic systems

Disclaimer

- Not only C
- Not only climate change (but all 16 environmental impacts of the Environmental Footprint life cycle impact assessment method)

Take home messages

- Biotech has a role in making it possible to keep fossil C in the ground
 - => and environmental scientists to properly account for it! (July 4th)
- Biotech has a role in improving its processes:
 - => developping more efficient processes using C as efficiently as possible
 - => processes using less water
 - => processes using less energy
- Beware what you put in:
 - => No free lunch! Even residual biomasses generate land use change. Consider what would have otherwise happened to the feedstock!
 - => Avoid Haber-Bosch! Recovering/recycling nutrients to the extent possible
- Transport is often meaningless!

Cambioscop publications

1. Brassard P, Godbout S, Hamelin L (2021). Framework for the consequential Life Cycle Assessment of pyrolysis biorefineries: A case study for the conversion of primary forestry residues. Renewable & Sustainable Energy Reviews, 110549. DOI: 10.1016/j.rser.2020.110549

2. Gomez-Campos A, Vialle C, Rouilly A, Hamelin L, Rogeon A, Hardy D, Sablayrolles C. Natural Fiber Polymer Composites – A game changer for the aviation sector? (2021) Journal of Cleaner Production, 124986. DOI: 10.1016/j.jclepro.2020.124986

3. Gomez-Campos A, Vialle C, Rouilly A, Sablayrolles C, Hamelin L (2021). Flax fiber for technical textile: a consequential life cycle inventory. Journal of Cleaner Production, 125177. DOI: 10.1016/j.jclepro.2020.125177

4. Hamelin L, Møller HB, Jørgensen U (2021). Harnessing the full potential of biomethane towards tomorrow's bioeconomy: A national case study coupling sustainable intensification, emerging biogas technologies and energy system analysis. Renewable & Sustainable Energy Reviews, 110506. DOI: 10.1016/j.rser.2020.110506

5. Hamelin L, Borzecka M, Kozak M, Pudelko R (2019). A spatial approach to bioeconomy: quantifying the residual biomass potential in Europe. Renewable & Sustainable Energy Reviews, 100, 127-142. DOI: 10.1016/j.rser.2018.10.017

6. Hansen JH, Hamelin L, Taghizadeh-Toosi A, Olesen JE, Wenzel H (2020). Agricultural residues bioenergy potential that sustain soil carbon depends on energy conversion pathways. Global Change Biology Bioenergy 12, 1002-1013. DOI: 10.1111/gcbb.12733

7. Javourez U, O'Donohue M, Hamelin L (2021). Waste-to-nutrition: a review of current and emerging conversion pathways. Biotechnology Advances 53, 107857. DOI: https://doi.org/10.1016/i.biotechadv.2021.107857

8. Karan SK, Hamelin L (2021). Crop residues may be a key feedstock to bioeconomy but how reliable are current estimation methods? Journal of Resources, Conservation and Recycling 164, 105211. DOI: 10.1016/j.resconrec.2020.105211

9. Karan SK, Hamelin L (2020). Towards local bioeconomy: A stepwise framework for high-resolution spatial quantification of forestry residues. Renewable & Sustainable Energy Reviews 134, 110350. DOI: 10.1016/j.rser.2020.110350

10. Lakshman V, Brassard P, Hamelin L, Raghavan V, Godbout S (2021). Pyrolysis of Miscanthus: Developing the mass balance of a biorefinery through experimental tests in an auger reactor. Bioresource Technology Reports, 100687. DOI: 10.1016/j.biteb.2021.100687

11. Shapiro-Bengsten S, Hamelin L, Bregnbaek LM, Zhou L, Munster M (2022). Should Residual Biomass be used for Fuels, Power and Heat, or Materials? Assessing Costs and Environmental Impacts for China in 2035. Energy & Environmental Science. DOI: 10.1039/D1EE03816H

12. Teigiserova DA, Hamelin L, Titura-Barna L, Ahmadi A, Thomsen M (2022). Circular bioeconomy: Life Cycle assessment of scaled-up cascading production from orange peel waste under current and future electricity mixes. Science of the Total Environment, 812, 152574. DOI: 10.1016/j.scitotenv.2021.152574

13. Teigiserova D, Barna L, Ahmadi A, Hamelin L, Thomsen M (2021). A step closer to circular bioeconomy for citrus peel waste: a review of yields and technologies for sustainable management of essential oils. Journal of Environmental Management, 812, 152574. DOI: 10.1016/j.scitotenv.2021.152574.

14. Teigiserova D, Hamelin L, Thomsen M (2020). Towards transparent valorization of food surplus, waste and loss: Clarifying definitions, food waste hierarchy, and role in the circular economy. Science of the Total Environment, 706, 136033. DOI: 10.1016/j.scitotenv.2019.136033

15. Teigiserova D, Hamelin L, Thomsen M (2019). Review of high value food waste and food residues biorefineries with focus on unavoidable waste from processing. Journal of Resources, Conservation and Recycling, 149, 413-426. DOI: 10.1016/j.resconrec.2019.05.003

https://cambioscop.cnrs.fr/

Video on the project on the MOPGA channel: <u>https://www.youtube.com/watch?v=0I7VkgHM9Iw&list=UUegK_BEcsgqJt1YO</u> <u>eFsenNg&index=12&ab_channel=MakeOurPlanetGreatAgain</u>

Note: all of our data are publicly available when ready, on the Cambioscop website and/or as SI of our papers and/or as preprints and/or on data repository

Occitanie