

Brings catalysis over lightspeed

High-throughput strain identification and production of fungal enzymatic cocktails for the valorisation of lignocellulosic biomass

Quentin Haguet & Egon Heuson

quentin.haguet@univ-lille.fr / egon.heuson@centralelille.fr

The perfect enzyme cocktail for biomass degradation

Virtual lab tour: https://www.vip-studio360.fr/galerie360/visites/vv-centrale-lille/vv-realcat-c.html

The REALCAT platform

REALCAT

- Advanced High-Throughput Technologies Platform for all types of experiments in Chemistry and Biology, dedicated to biomass valorization.
- 3 main areas of expertise
- Catalysis
 - Chemical catalysis: homogeneous and heterogeneous
 - Biocatalysis: enzyme and fermentation
- Structural and compositional characterisation of chemical and biological materials used/generated (catalysts, metabolites, polymers, enzymes, etc.)
- Side activities in biology
 - Proteomics, NRPomics
 - Search for new antimicrobial molecules
 - Production of secondary metabolites

Combination og chemo & Bio

REALCAT

The REALCAT platform

3 main types of equipment dedicated to :

- Synthesis of chemical and biological materials (catalysts, strains, enzymes, metabolites, etc.)
- Testing of catalytic properties (catalytic, nutritional, antimicrobial, etc.)
- Characterization (structure, composition, physicochemical properties, etc.)

Our final objectives :

- Accelerate each step of the experimental phase of a chemistry and biotechnology research project to significantly reduce the consumption of money and time
- Define new ways to valorise biomass

REALCAT

REALCAT floorplan

Biocatalysis

More than 30 automated devices

- All fully dedicated to highthroughput experiments
- Very high modularity allowing a
- large variety of subjects Fully integrated to allow

synergy between machines

+ some other robots, technical rooms and offices.

1	Central server - DELL	15	Flowrence - Avantium
2	Biomek NXp + BioLector Pro - Beckman Coulter/M2PLabs	16	M4 Tornado - Bruker
3	Autoflex Speed - Bruker	17	D8 Discover - Bruker
4	Acquity UPLC Synapt G2-Si HDMS - Waters	18	Tensor 37-HTS-XT - Bruker
5	Cary 3500 - Agilent	19	ICP-OES - Agilent
6	BioLector - M2pLabs	20	Vulcan 42S - Questron Technologies/Horiba
7	QPix 460 - Molecular Devices	21	XploRa - Horiba Jobin Yvon
8	Biomek FXp - Beckman Coulter	22	GC-FID-2010 Plus AF - Shimadzu
9	Biomek FXp - Beckman Coulter	23	GC-FID-MS-QP2010 Ultra EI - Shimadzu
10	Laminar flow hood - Aquaria	24	HPLC-UV-IR – Shimadzu
11	Catimpreg – Chemspeed	25	HPLC-DAD-MS - Shimadzu
12	Autoplant – Chemspeed	26	Calcination oven - Dislab
13	Flowrence - Avantium	27	Screening Pressure Reactor (SPR) - Freeslate
14	Flowrence - Avantium	28	Fume hood - Asem

Target: Biomass decomposition into biofuels, building blocks for fine chemistry and polymers:

- Production of bioethanol from the fermentation of extracted sugars
- Production of 20 platform molecules from C5 and C6 sugars

+ alcohols/phenols/aromatics from lignin: methanol, benzoic acid, catechol, cinnamic acid, etc.

The challenge: designing the perfect enzyme cocktail for lignocellulose degradation

- Ideal case: no pre-treatment (mimic nature)
- No "universal" bacterial/fungal strain efficient on cellulose, hemicellulose AND lignin => Find the perfect enzyme combination
- Many available approaches: metagenomics, low throughput fermentation screenings, *de novo* design, commercial blends...
- Numerous drawbacks:
 - Very time and money consuming
 - High systems complexity (specially in biodiversity mixtures)
 - Model substrates are not representative
 - Lack of synergy and thermodynamic equilibriums issues

HT approach for CWDE screening

Harvesting enzyme from microorganisms living on target substrate

- Premise 1: Organisms that develop on biomass are the best equipped to degrade it
- Premise 2: No single organism can proceed to a complete degradation
- \Rightarrow Need for harvesting and combining numerous strains
- First semi-automated method presented in 2018

Step 1 – Colony picking

Manual and automated colony recovery: using the QPix 460 :

- 96-needle head (approx. 2000 colonies/hour)
- > Up to 10 Petri (or 2 Q-Trays) dishes and 40 destination plates per batch
- "Intelligent" optical recognition software

Step 1 – Colony picking

Automated colony picking

Step 2 – MALDI BioTyper

- \Rightarrow First rapid identification using a MALDI-TOF mass spectrometer
- \Rightarrow Confirmation by 16s / ITS RNA sequencing or API galleries if required

Step 2 – MALDI BioTyper

Principle of MBT identification: Digital fingerprinting technique based on the membrane proteins of microorganisms

Step 2 – MALDI BioTyper

Principle of MBT identification: Digital fingerprinting technique based on the membrane proteins of microorganisms

Step 2 – MALDI BioTyper

Principle of MBT identification: Digital fingerprinting technique based on the membrane proteins of microorganisms

Sample Name	Sample ID	Organism (best match)	Score Value	Organism (second-best match)	Score Value
<u>N9</u> (+++)(C)	8 (standard)	Lactobacillus plantarum	<u>2.40</u>	Lactobacillus plantarum	<u>2.39</u>
<u>N10</u> (+++)(C)	9 (standard)	Lactobacillus pentosus	<u>2.37</u>	Lactobacillus pentosus	<u>2.29</u>
<u>N11</u> (+++)(C)	10 (standard)	Lactobacillus plantarum	<u>2.24</u>	Lactobacillus plantarum	<u>2.24</u>
<u>N12</u> (+++)(C)	11 (standard)	Lactobacillus pentosus	<u>2.07</u>	Lactobacillus pentosus	<u>2.03</u>
<u>N13</u> (+++)(C)	12 (standard)	Lactobacillus plantarum	<u>2.47</u>	Lactobacillus plantarum	<u>2.45</u>
<u>N14</u> (+++)(C)	13 (standard)	Lactobacillus brevis	<u>2.13</u>	Lactobacillus brevis	<u>2.13</u>

Meaning of Score Values

Range	.000 highly probable species identification .299 secure genus identification, probable species identification		Color
2.300 3.000			green
2.000 2.299			green
1.700 1.999			yellow
0.000 1.699	not reliable identification	(-)	red

Step 2 – MALDI BioTyper

Use of a liquid handling robot : Automated protein extraction and MALDI target

preparation

- > 3 main steps:
 - ⇒ Cryo-stocks preparation in 30% glycerol solution for bank conservation
 - \Rightarrow Cells washing and protein extraction
 - ⇒ Mixing the protein extracts with the matrix and depositing on the target

Biomek FXp – Beckman Coulter

Step 2 – MALDI BioTyper

Deposition of the sample/matrix mixture

CWDE production

Step 1 – Cultivation and CWDE induction

Use of a high throughput culture device: The BioLector

- \Rightarrow 48 x 1mL parallel fermentations
- \Rightarrow On-line monitoring and control of pH, pO₂ and biomass
- ⇒ Temperature, humidity and atmosphere control (aerobic and anaerobic fermentation)

BioLector – M2PLabs

Dissolved Oxygen Biomass & Fluorescence pH-value

CWDE production

Step 1 – Cultivation and CWDE induction

Use of a high throughput culture device: The BioLector

- \Rightarrow 48 x 1mL parallel fermentations
- \Rightarrow On-line monitoring and control of pH, pO₂ and biomass
- ⇒ Temperature, humidity and atmosphere control (aerobic and anaerobic fermentation)

⇒ Adaptation to offer the possibility to use raw materials directly (straw, stover, etc.)

BioLector – M2PLabs

Step 2 – Secreted CWDE mixing

Rational mixing using fully automated workflow using Biomek FXp

- ⇒ 384 cocktails combinations created from each batch of 3 strains / 1 inducing biomass / 2 tested substrates
- \Rightarrow New automation compatible DOE program developed

Step 3 – CWDE activity measurement

Extension of the activity measurement panel

CWDE production

Raulo et al., Biotechnol. Lett. 2021, 43, 2283. – Heuson et al., Revue IAA. 2022, 20220102-30-35.

Results & Perspectives

Results for strain identification and enzymes production:

- \Rightarrow 55 Bacteria isolated / 22 identified 23 Fungi isolated / 14 identified from 5 biomass sources
- \Rightarrow Screenings of 3 Fungi + 3 inducing biomass sources for CWDE production
- \Rightarrow Correlation of enzyme activities detected with complementary analytical methods
- \Rightarrow Strong correlation between biomass composition and CWDE composition
- \Rightarrow Successful use of CWDE cocktails to increase the production of short chain organic acids by

bacterial dark fermentation, including the implementation of a Plug Flow Reactor (PASS-BIO)

New developments in progress:

- \Rightarrow Analysis of the protein composition of cocktails (proteomics)
- ⇒ Attempt to correlate the enzyme composition of the cocktails with the screening parameters (biomass, conditions, strains, etc.) by machine learning.
- \Rightarrow Creation of artificial cocktails
- \Rightarrow Attempt at direct solid deposit of strains from agar plates for faster identification

Ongoing developments

Attempt to tranfer strains directly from solid agar to MALDI target

Thank you for your attention!

Brings catalysis over lightspeed

<u>www.realcat.fr</u>

... au Nord, c'étaient les Corons!