MUTATEC

Bioconversion by insects

J. COSTIL*,* 26/04/2022

Nutritional and technical considerations to be taken in account when engineering a cost-effective diet for BSF

ADEBIOTECH – Romainville

J. COSTIL 26/04/2022

Bioconversion by Insects: what is it all about ?

- We recycle agriculture and food industry leftovers and by-products.
- ✓ We are multi-source : we offer recycling services to all producers.
- ✓ We are local : we collect from less than 80 km around.
- ✓ We upgrade : our farms are Protein Refineries.
- ✓ We are high quality : our products are high grade and traceable.

Which Feedstocks are eligible for Bioconversion ?

- ✓ Allowed by **Regulations**.
- ✓ **Suitable** for Larvae
- ✓ Allowing a guaranteed quality of final products.
- ✓ Can undergo industrialized processes.

MUTAT

Regulations for insect feedstocks

Insects are « livestock », to which the following European regulations apply :

- CE n°999/2001
- CE n° 142/2011
- CE n° 1069/2009
- Directive 97/78

Allowed Feedstocks :

- ✓ Fruits and vegetables from producers, wholesalers, retailers.
- ✓ By-products from vegetal products transformation (grain mills, sugar extraction, oil mills, fruit juice producers...).
- ✓ A limited number of non-vegetal raw material of 3rd Category (EU Reg n°1069/2009)
 - CE n°999/2001
 - Fish meal,
 - Blood products from non-ruminants,
 - Hydrolysed Proteins from non-ruminants,
 - Gelatine and Collagen from non-ruminants,
 - Eggs and egg by-products,
 - Milk, milk-derived products,

Regulations for insect feedstocks

Annexe III of EU Reg N° 767/2009 specifies forbidden feedstocks:

- ✓ Transformed Animal Proteins
- ✓ Urines, Faeces,

✓

- ✓ All wastes from water and waste water treatment plants,
- ✓ Urban Solid Wastes

Feedstocks that are Suitable for Larvae ?

We can cope with material with no economic value, rotten, smelly, moldy...

MUTAT

Feedstocks that are suitable for Larvae ?

...but Larvae are livestock and they have their own requirements !

- ✓ The Rearing Substrate resulting from the Feedstocks must be nutritive and digestible
 - Proteins: BSF Larvae are not "poly-gastric", no protein = no growth
 - **Carbohydrates:** to provide energy for larvae life and to constitute their reserves
 - Preferably low Lipids,
 - pH and Salinity under control,
 - No anti-nutritional factors, no toxics (beware insecticides !),
 - No bactericides that would jeopardise the larvae gut microbiota.
- ✓ The substrate must be **liveable** because it's their home:
 - with a good consistence allowing the larvae to crawl through the entire thickness of the substrate while breathing easily : not sticky, not oily, porous, aerated,
 - moisture must be in the range 60% to 80%,
 - parasites must be under control (domestic flies, molds).

Feedstocks must be healthy !

CertiFLY *Processes for controlling health safety applied to bioconversion by insects.*

A D E M E

WHAT WE MUST GURANTEE for OUR PRODUCTS :

- Absence of chemical toxicity
 - Heavy metals,
 - Dioxines, PCB,

Prions

- Pesticides residues,...
- ✓ Absence of biological risks
 - Vertebrates Parasites and Viruses
 - Zoonotic Pathogens Salmonella, L.
 monocytogenes, E. coli, C.
 perfringens, Campylobacter
 - Mycotoxins Aspergillus, Penicillium, Fusarium, Patuline

HOW WE ACHIEVE THE GOAL THROUGH FEEDSTOCK MANAGEMENT :

- ✓ Prior Feedstock source acceptance:
 - Register provider, understand his production processes and related risks.
 - Lab. Analyses on samples.
 - Larvae growth Tests.
- ✓ Upon Feedstock delivery:
 - Check conformity with prior acceptance
 - Control Lab Analyses.
- ✓ During production:
 - Traceability at each stage.
 - Process (detect/separate foreign bodies)

Feedstocks must be suitable for industrial processes

Industrial mass rearing of insects for constant controlled and high quality products imposes specific "technical requirements".

- **Dry Matter** of substrate must be adjusted very accurately :
 - Larvae metabolism generates a lot of heat and moisture evaporation, therefore the substrate tends to get too dry before it is entirely digested : a "minimum starting moisture content" must be respected.
 - On the contrary, once digested, the substrate must be sufficiently dry to allow for a clean separation of larvae and frass : a "maximum starting **moisture content**" is therefore also requested.
 - The ideal moisture content depends on climate and rearing conditions : it usually stands between 72% to 76%.
- To obtain an easy and clean separation of frass and larvae, greasy and sticky matters, hard parts such as kernels and stones, long fibres must be eliminated.
- ✓ Nature of feedstock and its Protein/Carbohydrates ratio have a major influence on ammonia and odour emissions of the farm. ΜΠΙΤΔΤ

Last, but not least : feedstock is the key for profitability !

What quantity of larvae do you get out of your feedstock ? Nutritional quality of feedstock drives the Feed Conversion Ratio (FCR) !

Last, but not least : feedstock is the key for profitability !

What quality of larvae do you get with your feedstock ? Nutritional quality of feedstock influences the Larvae Composition

MUTAT

Last, but not least : feedstock is the key for profitability !

At the end what counts is FCR+Larvae quality vs Cost of feedstock ! When it comes to costs, what you are looking at is to maximise the **"protein to protein"** ratio, because bioconversion is **"Protein refining**".

Protein-rich substrate \rightarrow Better FCR but lower Protein extraction efficiency !

Last, but not least : feedstock is the key for profitability !

To select, mix and give the fair value to the feedstocks you need :

- ✓ Experience on larvae nutrition
- ✓ Data on feedstock
- ✓ Modeling tools

SELECTION OF FEEDSTOCKS AND FORMULATION

				1	2	
		Units		Fruits Peals + Stones 02/22	Bakery leftovers	
	% DM	%	/	9,8	77,0	
e.	ASH	g/kg DM g/kg RM		61,0 6,0	27,0 20,8	
CALLER WORK	PROTEINS	g/kg DM g/kg RM		82,0 8,0	97,0 74,7	
Net a	ETHER EXTRACT	g/kg DM g/kg RM		102,0 10,0	79,0 60,8	
	SUGARS + STARCH	g/kg DM g/kg RM		102,0 10,0	700,0 539,0	
ALC: NO	CRUDE FIBERS	g/kg DM g/kg RM		240,0 23,5	8,0 6,2	
-	FORM (Shovelable/Liquid/Powder)			Shovelable	Shovelable	
ŝ	Cost delivered to farm	€/T RM		1,0	20,0	
i.	Cost of DM	€/T DM		10,2	26,0	ľ
	Cost of Protein	€/T Prot DM]/	124,4	267,8	ľ
	Cost of Sugars + Starch	€/T S+T DM	V	100,0	37,1	ľ

Quantities of Feedstocks Incorportated	tons FW/year	
Porportion of Each Feedstock Incorporated	% of FW	

260	200	60	
100,0%	76,9%	23,1%	Ī

SIMULATED COMPOSITION AND FCR OF RESULTING SUBSTRATE

		REQUIRED	ACHIEVED			
Quantities of Feedstocks Incorportated	tons FW/year	100	260			
TOTAL QUANTITY OF DRY MATTER	t		66			
% DM	%	25% - 28%	25,3%			c
ASH	g/kg DM g/kg RM	<100 <30	37,1 9,4		NO	L S
PROTEINS	g/kg DM g/kg RM	140-200 35-60	92,5 23,4	ΛT	ULAT	
ETHER EXTRACT	g/kg DM g/kg RM	< 35 < 9,5	85,9 21,7	AI	SIM	E

Thank you for your attention

https://www.facebook.com/mutatec https://www.twitter.com/mutatec_insects https://www.linkedin.com/company/mutatec http://mutatec.com

j.costil@mutatec.com +33.6.72.83.14.93

Bioconversion by insects

MUTATEC