metagenopolis **MGDS**.eu

Microbiome and metabolome features of the cardiometabolic disease spectrum

- Most common chronic non-communicable diseases involve a complex interplay between polygenic susceptibility, aging, sex and a multitude of environmental exposures.
- Environmental components (diet, ...) exert some of their pathogenic impact via modification of the intestinal microbiome.
- Present study is focused on ischaemic heart disease (IHD), a leading cause of mortality worldwide.
- Disease-specific microbiome and linked metabolome features need to be separated from confounders introduced by pre- and co-morbidities and by multifactorial treatment.

metadenopolis

Metacardis consortium

14 Partners all around Europe

Scientificaly recognized PIs

- Dusko Ehrlich
- Karine Clement
- Oluf Perderson
- Peer Bork
- Marc-Emmanuel Dumas

50

@MgpsLab

Group 8	Group 1 RH	Group 1	Group 2A	Group 2B	Group 3	Group 4	Group 5	Group 6	Group 7
(n= 277)	(n=43)	(n= 252)	(n= 248)	(n= 139)	(n= 552)	(n= 111)	(n= 159)	(n= 98)	(n= 21)
The control group , including participants with a BMI <25 that did not present the metabolic syndrome, were not diabetic, and did not have coronary heart disease.	The rather healthy group , including participants with a BMI ≥ 25 and < 35 but without any cardiometabolic condition	A group of participants without diabetes or coronary heart disease, but with the metabolic syndrome	Participants with severe obesity (BMI ≥35) that were neither diabetic nor suffering from coronary artery disease	Participants that were candidates for bariatric surgery, i.e. with a BMI ≥35 and comorbidities, or a BMI ≥40	Participants with diabetes but without coronary artery disease	Participants with a first event of coronary artery disease	Participants suffering from chronic coronary artery disease without heart failure (i.e. presenting a left- ventricular ejection fraction \geq 45);	Participants suffering from chronic coronary artery disease with heart failure (i.e. presenting a left- ventricular ejection fraction <45);	Participants suffering from heart failure related to origins other than coronary artery disease

Study design

Heart Failure (HF) n=102 Chronic Ischaemic Heart Disease (CIHD) n=158 Untreated Metabolically Healthy Controls Acute Coronary Metabolically (HC) n = 275 Matched Controls Matched Controls Syndrome (UMMC) n = 222 (MMC) n = 372 (ACS) n=112 Metabolic premobidities Ischaemic Heart Disease (IHD) n=372 Impact of metabolic dysregulation segregated from IHD using metabolic matching Intervention with polypharmacy Impact of polypharmacy filtered using a deconfounded pipeline HC vs. UMMC UMMCvs. IHD HC vs. MMC MMC vs. IHD HC vs. IHD

Gut microbiome and metabolome features directly or indirectly linked to Ischaemic Heart Disease

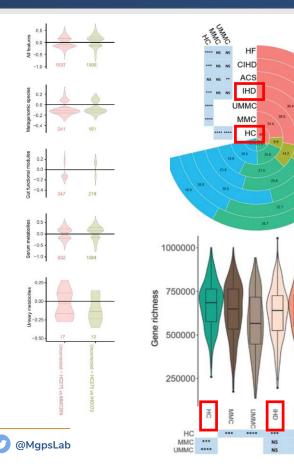
➢ 6 different study cohorts

Multiple different omics:

- Anthropometric measures
- Inflammatory parameters
- Drugs intakes
- Dietary measures
- Gut microbial diversity indexes, taxa and microbial functional modules
- Metabolites in fasting serum and urines

1 external validation cohort composed of acute coronary israeli patients (Talmer-Barkan et al, Nature medecine 2022):

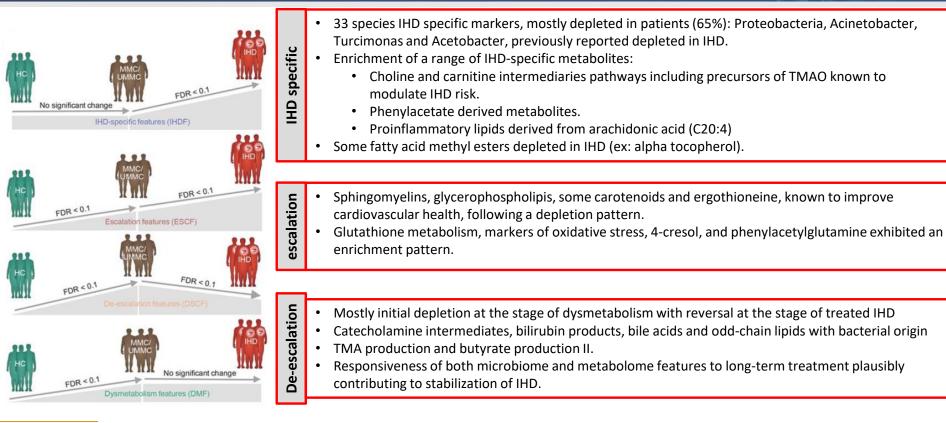
- 629 metabolomic profils
- 540 metagenomic profils


Majority of microbiome and metabolome alterations happen long before IHD event

Bacteroides 1 Bacteroides 2 Prevotella Ruminococcus

•

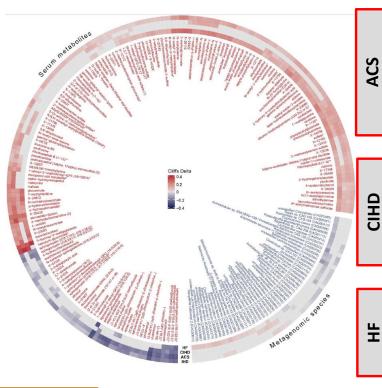
INRA



- Microbiome and metabolome differed between IHD and HC:
 - From *Bacteroides* 1 and *Ruminococcus* enterotypes towards the *Bacteroides* 2 as disease worsened.
 - Loss of microbial gene richness in MMC and IHD.
 -BUT comparing HC to MMC revealed even more differential features....
- ... AND higher discriminatory potential between IHD and HC than between IHD and MMC. Most of the features are already significant in MMC.
- Studies erroneously reported dysmetabolism features as IHD features. They may contribute to increased risk of IHD but are not specific for IHD.
- Major shift in gut microbiome and metabolome during the dysmetabolic stage prior to IHD diagnosis.

Yet some alterations are specific to IHD

@MapsLab



Detailed analysis of IHD subgroups (ACS, CIHD and HF) groups provided more granularity

• Dysmetabolism diruptions persist throughout the various stages of IHD.

@MapsLab

- Microbiome alterations related to dysmetabolism
- Metabolome perturbations beginning shortly before the ACS event:
 - increase of pro-inflammatory metabolites, products of phenylalanine metabolism (phenylacetylcarnitine, ...) and TMA.
 - decrease of health beneficial metabolites alpha-tocopherol, ergothioneine, methyl oleate and methyl hexadecanoate.
- Additional microbiome changes:
 - enriched potentials for BCAA and methionine biosynthesis
 - enhanced degradation of phenylalanine and tyrosine
- Increased abundance of methionine and related metabolites, associated with cardiovascular phenotypes.
- Additional microbiome changes
- Enrichment of 4-cresol and derived metabolites, choline and TMA
- Altered fatty acid metabolism (alpha-tocopherol, ergothioneine and 3indoleglyoxylic acid depletion), known to play a crucial role in HF pathogenesis.

Major part of our observed IHD alterations validated in a external cohort

Model 1: Clinical variables alone Model 2: ACS-specific biomarkers Model 3: Clinical variables with ACS-specific biomarkers

@MgpsLab

- Models built with specific –omics markers yielded AUC systematically higher than models with clinical markers only.
- Combination of the two marker types did not improve classification relative to MMC

Talmor-Barkan dataset:

- Similar changes observed in the two studies
- Models based on our ACS-specific metabolome markers performed substantially better than models based on clinical variables alone.

- Major shift in gut microbiome and metabolome during the dysmetabolic stage prior to IHD diagnosis :
 - multiple species and microbial functional potentials like reduced SCFAs biosynthesis and increased BCAAs production.
 - low cell count *Bacteroides 2* enterotype in both MMC and IHD.
- IHD cases display:
 - depletion of fatty acid esters ergothioneine and alpha-tocopherol, known for vasoprotective and antioxidant properties
 - enrichment in TMA intermediates and tryptophan and phenylalanine derived metabolism.
 - 4-cresol and phenylacetylglutamine representatives of ESCF potentially mirroring disease severity.
- In the IHD subtype analyses:
 - dysmetabolism-related gut microbiome changes in ACS cases.
 - 45% of altered host metabolites in ACS cases unrelated to dysmetabolism.
 - alterations of the microbiome and metabolome specific for CIHD and HF
 - overwhelming role for microbial-host metabolism of aromatic amino acids derived from phenylalanine and tyrosine in the later stages of IHD pathogenesis.
- Better stratification IHD cases from HC and MMC with identified microbiome and metabolome features;
- > considered modifiable targets in future preclinical and clinical IHD prevention trials.

Thank you for your attention

