

MetaGenoPolis

Unité de recherche INRAE de Jouy-en-Josas Domaine de Vilvert, Bât.325 78 350 Jouy-en-Josas France

Harnessing gut microbiome science

For health & nutrition discoveries & innovations

We pionneer, We never settle

We are an INRAE microbiome research unit. opened to the private sector and academic communities

2008

Coordination of the MetaHIT project (1st catalogue of human gut microbial genes)

2012

Creation of MGP funded by the French government 'Investissments d'Avenir' (PIA) (19 m€), including ICAN and **UCLY** partners

2014

Creation of Maat Pharma

2019

Prolongation of the PIA support (5.7m€)

2022

Le French Gut project Ìaunch ISO27001 certified

2011

Coordination of the International Human Microbiome Standards (IHMS)

2013

Creation of Enterome

2016

ISO9001 certified

2021

Creation of Novobiome

Scientific excellence is in our DNA

+ 140 publications

H-index = 48 (>2012)

Home to Highly Cited Researchers 2021

Clarivate

Drug & Antibioresistance

2019: Ruppé et al. **Nature Microbiology**, Prediction of the intestinal resistome

2021: Forslund et al. **Nature**, Dosedependent drug-microbiome association

Cancer

2018: Routy et al. **Science**, Microbiome and epithelial cancer immunotherapy

2018: Gopalakrishnan et al. **Science**, Microbiome and melanoma cancer immunotherapy

2020: Derosa et al. European Urology, Microbiome and Resistance to Cancer Immunotherapy in Renal Cell Carcinoma Patients

2021: Messaoudene et al. **Cancer Discovery**, A Natural Polyphenol Exerts Antitumor Activity and Circumvents Anti-PD-1 Resistance through Effects on the Gut Microbiota

Metabolic disorders

2012: Qin et al. **Nature**, Type II Diabetes

2013: Le Chatelier et al. **Nature**, Richness of gut microbes and metabolic markers

2014: Qin et al. **Nature**, Human gut microbiome alterations in liver cirrhosis

2015: Qin et al. **Nature**, Accurate liver cirrhosis diagnostic

2015: Forslund et al. Nature, Drug confounders in microbiome analysis 2016: Pedersen et al. Nature

Microbiome & insuline resistance **2020:** Vieira-Silva et al. **Nature,** Microbiome and Statin therapy

2021: Solé et al. **Gastroenterology,** Alterations of Gut Microbiome in Cirrhosis

2021: Fromentin et al. **Nature medecine**, Microbiome and metabolome features of the cardiometabolic disease spectrum

Diet

2011: Arumugam et al. **Nature**, Enterotypes

2013: Cotillard et al. Nature, Impact of diet on gut microbiome 2013: Le Chatelier et al. Nature, Richness of gut microbes and metabolic markers

2019: Cox et al. Gastroenterology, Low FODMAP Diet in Inflammatory Bowel

Disease patients
2020: Meslier et al.

Gut, Beneficial effects of Mediterranean diet

Gut-brain

2021: Rosario et al. **Cell reports**, Gut microbiome and Parkinson's disease

Technologies

2010: Qin et al. **Nature**, The human gut reference catalogue

2013: Sunagawa et al. **Nature Methods**, Universal phylogenetic markers

2014: Nielsen et al. Nature Biotech, Method for identifying metagenomic species 2014: Li et al. Nature Biotech. 10 millions

genes reference catalog **2015:** Xiao et al. **Nature Biotech**, A mouse

gut gene catalogue **2016:** Xiao et al. **Nature Microbiology**, A pig gut gene catalog

2017: Costea et al. **Nature Biotech**, Standards for microbiome studies

2018: Plaza Onate et al., **Bioinformatics**, Reconstitution

of metagenomic pangenome species

2021: Marcos-Zambrano et al.,

Front Microbiol, Identification of human health biomarker with Machine Learning

Our mindset: science to serve innovation

154 projects with private collaborators

36 patents

11 licences

CIR eligible

ISO 9001 certified

Pushing further gut microbiome science to innovate with partners

We aim to be your trusful R&I collaborator to accelerate the development of gut microbiomebased innovations: from ideation to proof of concept studies

We ambition to be at the forefront of science to leverage as soon as possible scientific breakthroughs

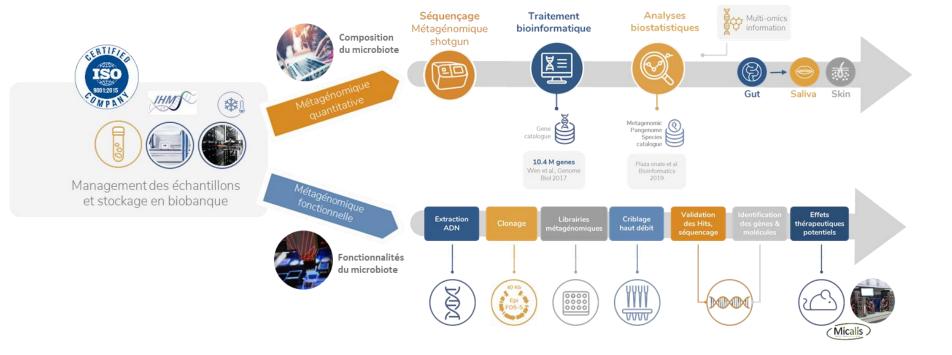
BRIDGING THE GAP BETWEEN BASIC & APPLIED RESEARCH

DOMAINS OF APPLICATIONS

Elucidation of the modes of action of gut bioactives

Personalization of medicine and nutrition (diagnostic & pronostic biomarkers)

Development of gut directed bioactives (pro/pre/postbiotics & live biotherapeutics)



Focus on our metagenomic pipelines

OUR BIOSAMPLING & SEQUENCING **PLATFORMS**

Compliance of sample management to internationalustandards (IHMSà00.000 extraction performed in a P2 /L2 laboratory

biosamples & DNA storage capacity in a fully automated biobank. CRB labeled

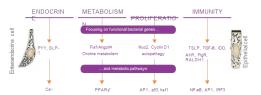
Whole DNA sequencing with short and long read-based technologies

OUR FUNCTIONAL METAGENOMICS PLATFORM

An automated and certified process to explore interactions between gut bacteria & human cells

- · High throughput screening of (meta)genomic libraries using cell-based
- 75.000 clones ready to be tested (with unknown bacterial genes)
- · 18 Metagenomic libraries from healthy & IBD subjects available

Assays reporting impact on immune parameters, inflammation, epithelial barrier, oxidative stress available

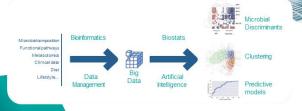

OUR COMPUTATIONAL PLATFORM

Our in-house state-of-the-art integrated meta genomic pipeline

Bioinformatics, Biostatistics and data science

- Computational capacity of 1.000 CPUs. > 2 petabytes storage space
- · Use of Metagenomic species and strain level resolution
- · Modeling and predicting changes in gut microbiome associated with disease
- . Deepen the knowledge of the link with nutrition and gut microbiome
- · Identify responders and non-responders individuals
- · Build Guild & trophic networks
- . Access to 20.000+ microbiome profiles (public & in-house) searchable for your project

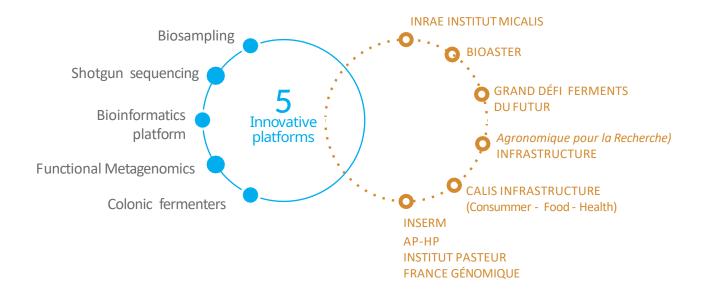
OUR 5 INNOVATIVE **PLATFORMS**



Artificial simulation of the intestinal tract (colon)

6 fermenters (in collaboration with INRAE MICALIS unit) available to:

- · Test bioactives on the gut microbiota composition and activities (metabolites)
- · Isolate new strains as potential next generation probiotics
- · Identify biological targets to develop gut microbiome modulators



We work in and with an ecosystem

We operate 5 innovative platforms which can be complemented by the technologies of our strategic partners

Pharmaceutical industry applications

Identification of bacterial biomarkers associated with dysbiosis:

microbiome signatures used as a diagnostic or prognostic tools

Stratification of individuals to a better personnalized medecine: microbiome responders vs non responders, side effects of drugs

Impact of drugs on the gut microbiome: composition, functions, level of intestinal antibiotic resistance genes/resistome, resilience

Identification and culture of new species with function of interest: next generation probiotics...

Identification of microbial genes
& metabolites able to interact with human cells: anti-inflammatory, antiproliferative, satiogenic, gut barrier effect ...

Identification of genes of interest for your product (probiotics, commensal bacteria...) on targeted intestinal functions (endocrine, metabolism, gut barrier, immunity)

Agri-food industry applications

Impact of prebiotics, probiotics, functional Stratification of individuals to food on the gut microbiome: a personalized nutrition: composition, functions, SCFAs... differentiation of good and poor responders to specific diet Impact of various diet: Tracking of your probiotics and live biotherapeutic strains fermented / vegan / low FODMAP/ mediterranean / high-fibers... in the gut microbiome Guidelines to design a new functional **food product** benefic for the gut microbiome Identification of probiotics of interest: new isolates/ mode of action Animal health: Impact of drugs, prebiotics, probiotics, food product on the gut microbiome

Academic & Private Collaborations

European Science projects

2018-2023:

HomoSymbiosus | Symbiosis microbes - Human

2018-2024:

GEMMA | Autism

2018-2025:

MicrobPredict | Liver diseases

2021-2025:

Human Microbiome Action

Some of our industrial partners

Some of our (disclosable) success stories

With our private collaborators

novo nordisk **fonden**

We identified potential microbiome targets involved in the gut brain dialog

doi: 10.1016/j.bpsqos.2022.01.009

We developed a gut microbiome-directed bread enriched with rationaly selected fibers

doi: 10.1080/19490976.2022.2044722

We deciphered the effects of a prebiotic on the gut microbiome

· doi: 10.1002/mnfr.202101091

We investigated the effects of a drug (diosmectite) on the gut microbiome

· doi: 10.1186/s12866-022-02464-7

With our spin-off start-ups

We support the French biotech sector by helping our sisters start-ups

• MaaT Pharma is the first biotech company to initiate a Phase 3 trial in haemato-oncology with a microbiomebased biotherapy

National contribution to collect 100,000 faecal samples and associated nutritional and clinical data by 2027

Project initiated by MetaGenoPolis-INRAE and supported by INRAE

Consortium le French Gut

INRAE consortium with public institutions (APHP, INSERM, Pasteur) and 9 private partners

Pilot phase in 2022

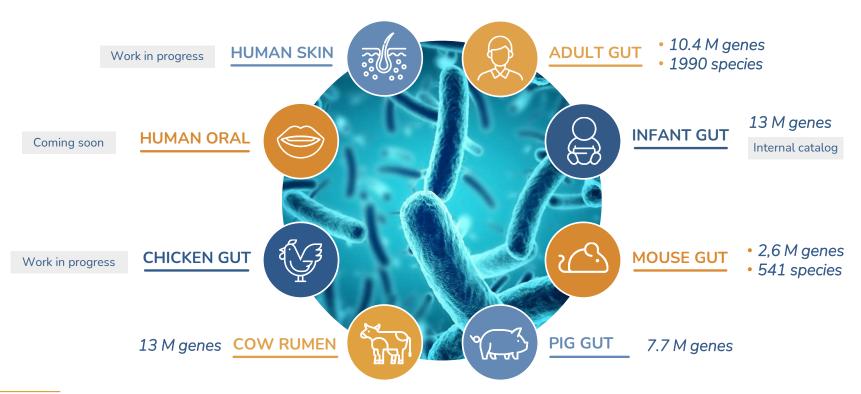
A first phase of 3000 participants will be launched in 2022

Expand your R&I with us...

Let's co-build!

Business developer & strategic partnership manager:

karine.valeille@inrae.fr



We tailor our pipelines & tools to the needs of our partners

