ALTERNATIVES TO ANIMAL EXPERIMENTATION

Intestinal simulators in the 3R context

Phileo

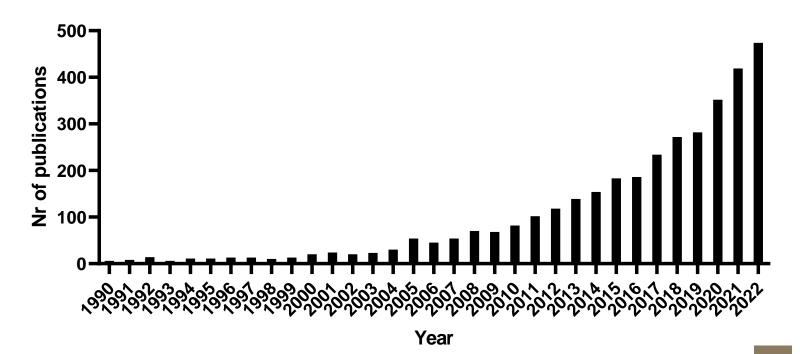
Dr Jonna Koper, PhD j.koper@lesaffre.com Nutrition, Microbiota & Health, Lesaffre Institute of Science and Technology

CHALLENGES FOR NUTRITIONAL STUDIES IN PET FOOD INDUSTRY

3R context

- Nutritional studies include **multiple processes** like physicochemical , mechanical and microbial parameters
- Mode of action often not possible or challenging to study in vivo
- In vivo nutrition & health studies around pets might **feel contradictory** for pet owners
- Economical, ethical and societal aspects

Solution: In vitro intestinal models to reduce and refine and in some cases replace animal experimentation


DEVELOPMENT OF INTESTINAL SIMULATORS

Origin around 1990s: all for human

Static simulations

Upper digestion (INFOGEST) Batch fermentation

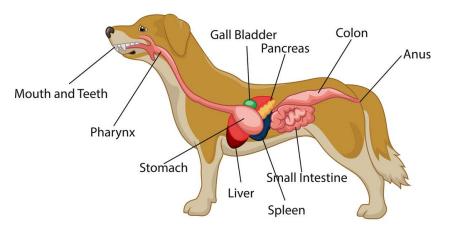
(semi) Dynamic simulations TIM1: Upper digestion SHIME: Full digestion

INTESTINAL SIMULATOR TECHNOLOGY

Upper GI tract

Static digestion models (Cost-Infogest consensus method)

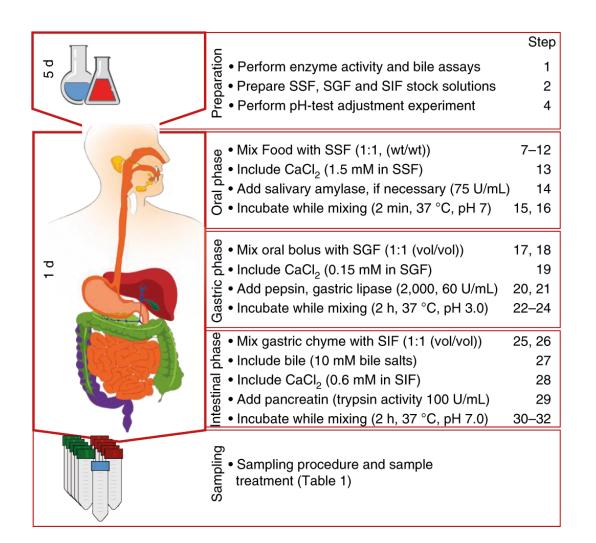
Human

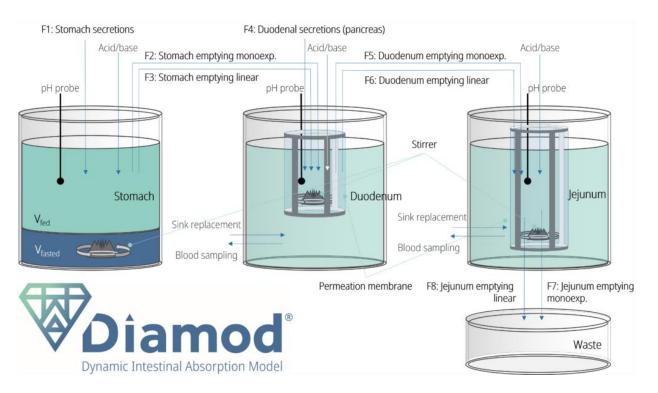

Semi-static digestion models (ProDigest with absorption membrane) \rightarrow Human

Dynamic digestion model TIM1 (Tim-Company)

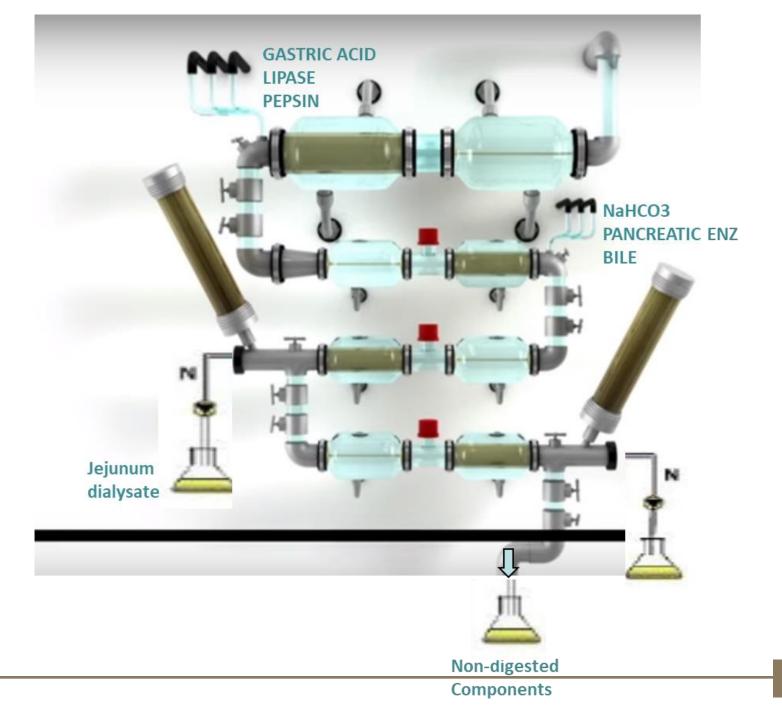
an

 \rightarrow


 \rightarrow Human, pig, dog



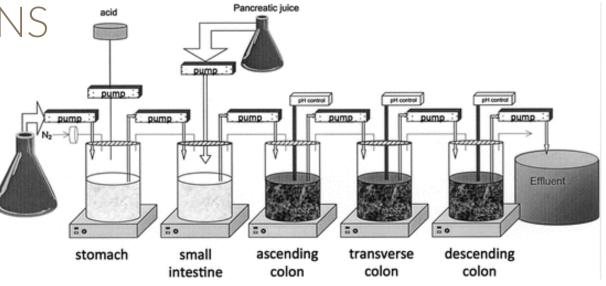
UPPER GIT SIMULATIONS

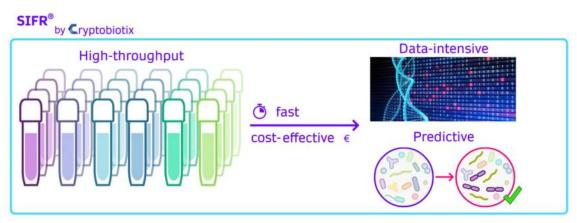

Semi- dynamic with dialysis ProDigest (BE)

Static INFOGEST consensus method

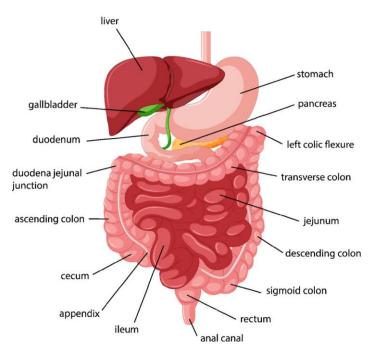
UPPER GIT SIMULATIONS

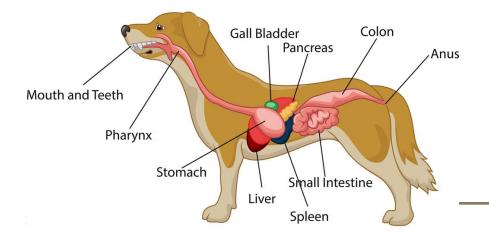
TIM1 TIM-Company (NL)

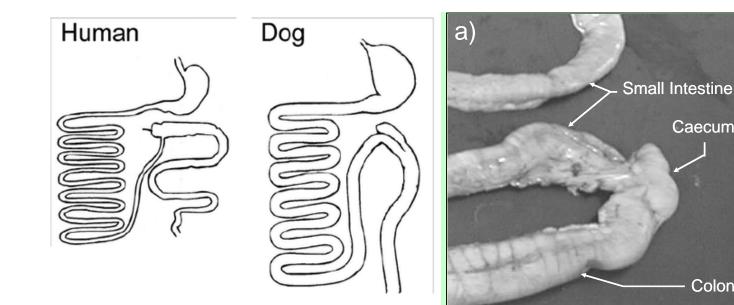

- Fully dynamic
- Bio-accessibility
- Probiotic survival


LOWER/FULL GIT SIMULATIONS

TIM2 colonic fermentation Can be linked to TIM1 (TIM-Company)




SHIME: dynamic full gut simulator (ProDigest)

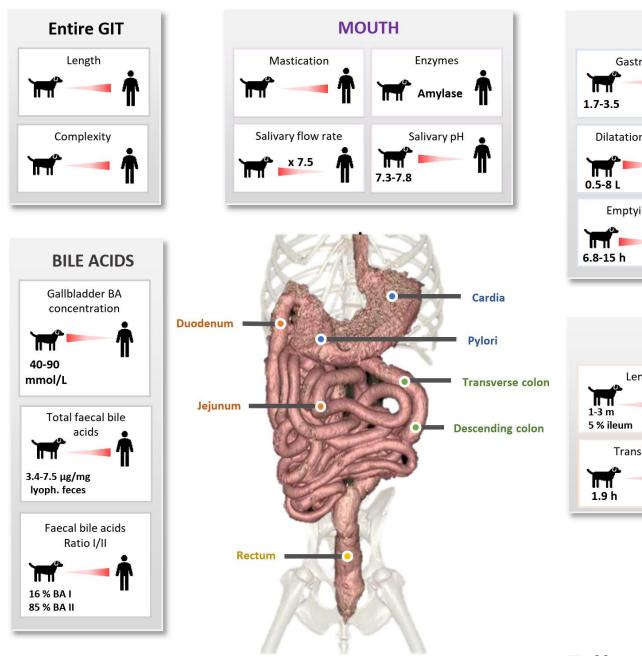


SIFR: High-throughput fermentation (Cryptobiotix)

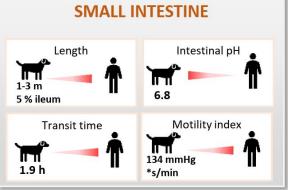
HUMAN VS DOG

Main differences

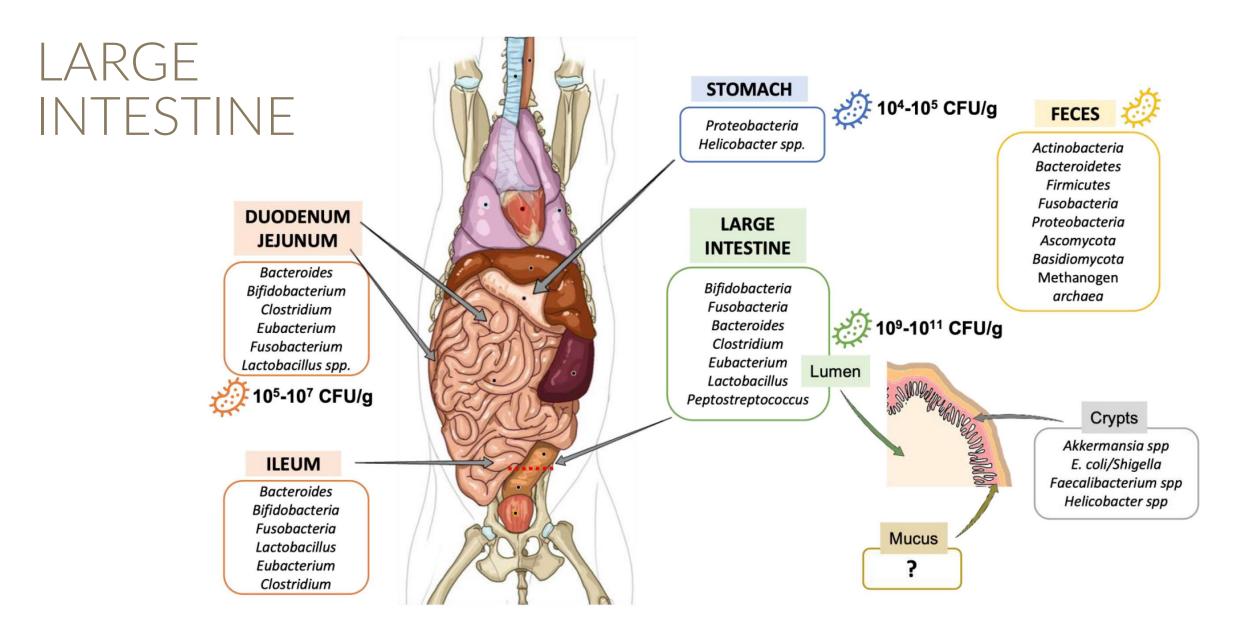
- Length -
- Transit time
- рΗ -
- Enzyme concentrations -
- Temperature —
- Diet —
- Microbial community


Caecum

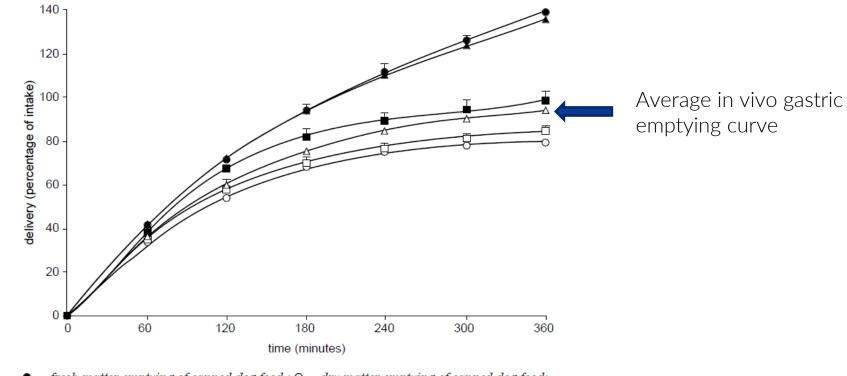
Colon


UPPER GIT

Physiological specificity


Human vs Dog

STOMACH Gastric pH 1.7-3.5 Dilatation capacity 0.5-8 L Emptying time €mptying time Castric pH Castric pH


Deschamps et al., 2022

VALIDATION STUDY FIDO TIM1

FIDO: Functional gastroIntestinal DOg model

- Integrates all upper digestive compartments: stomach, duodenum, jejunum and ileum
- Simulates body temperature, gastric and intestinal pH kinetics, gastric and ileal emptying curve, transit time, mixing and delivery of digestive secretions
- Validation comparing gastric meal delivery with different meals vs the average in vivo gastric emptying

• = fresh matter emptying of canned dog food; O = dry matter emptying of canned dog food; = dry matter emptying of dry dog food, particles $\leq 1mm$; $\Box = dry$ matter emptying of dry dog food, particles $\leq 3mm$; $\blacktriangle =$ fresh matter emptying of dry dog food; $\triangle =$ preset gastric delivery curve.

LESAFFRE

VALIDATION STUDY FIDO TIM1

Computer programming to mimic the in vivo emptying curves

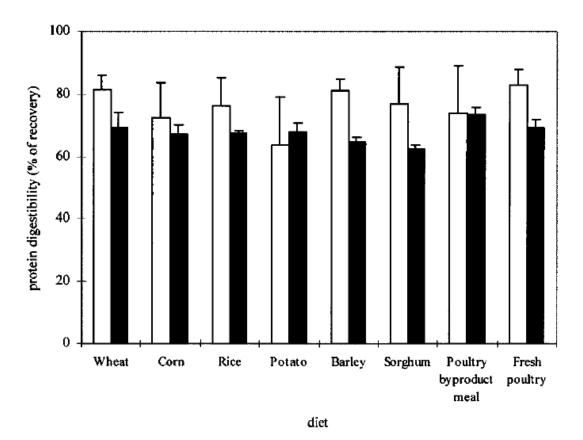


Figure 3 Comparison between the mean (\pm sd) protein digestibility values for ileally cannulated dogs (white bars; Murray *et al.*, 1997; 1999) and the mean (\pm range) protein digestibility values (% of input) in the *in vitro* gastrointestinal dog model (black bars) calculated according to Formula 1

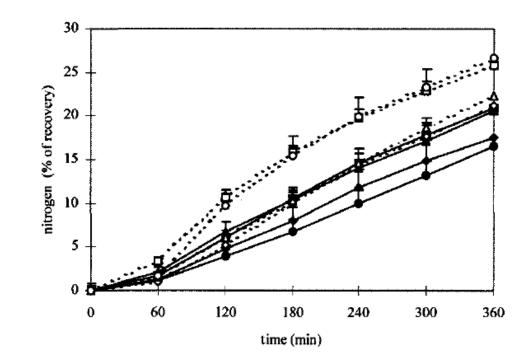
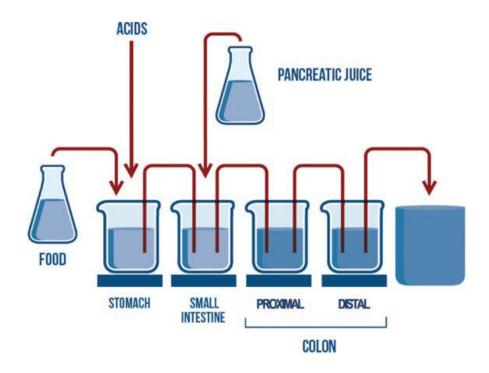



Figure 5 Mean cumulative ileal delivery of N (\pm range) of 8 different diets varying in starch source or in poultry product component in the *in vitro* canine gastrointestinal model. Solid lines: \blacklozenge wheat, \blacksquare corn, \blacktriangle rice, $\textcircled{\bullet}$ potato and dashed lines: \diamondsuit barley, \square sorghum, \vartriangle poultry by-product meal, \bigcirc fresh poultry

VALIDATION STUDY SCIME

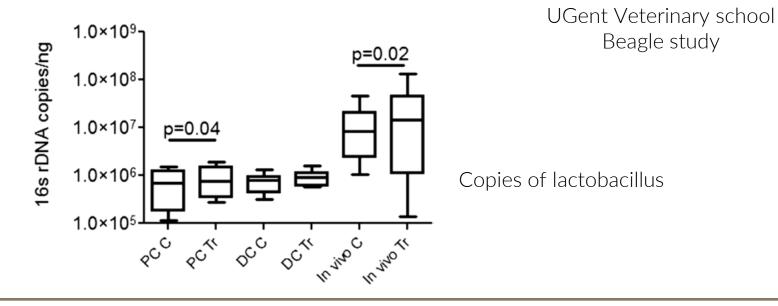
13

VALIDATION STUDY SCIME

		SCIME	SHIME			
	Volume, mL	Residence time, h	рН	Volume, mL	Residence time, h	pН
Stomach	140	1	2.00	200	2	2.00
Small intestine	200	4	6.80	200	4	6.80
Proximal colon	100	6	5.60 to 5.90	500	20	5.60 to 5.90
Transverse colon	_	_	_	800	32	6.10 to 6.40
Distal colon	167	10	6.65 to 6.90	600	24	6.60 to 6.40
Feeding regimen		2×/day			3×/day	

Parameters SHIME vs SCIME

14


MICROBIAL		In vitro					
Comparison		PC		DC		In vivo	
		%	SEM	%	SEM	%	SEM
	Actinobacteria	4.9	1.0	4.9	1.0	3.8	0.6
Awareness on	Bifidobacterium	1.0	0.3	1.0	0.2	0.5	0.1
bies	Coriobacteriaceae	3.8	0.7	4.0	0.7	3.6	0.7
bias 🛛 🗖 🗖	Bacteroidetes	40.1 ^b	0.8	28.8°	1.9	1.2ª	0.2
	Bacteroides	10.5 [⊾]	0.6	10.5 ^b	1.8	0.3ª	0.1
	Prevotellaceae	29.5 ^b	1.3	18.2°	1.5	0.8ª	0.2
→ M-SCIME	Uncultured Bacteroidetes	0.1	0.1	0.1	0.0	0.1	0.1
	Firmicutes	52.4 ^b	0.5	48.6 ^b	0.7	94.4ª	0.1
development	Lactobacillus	17.2 ^{a,b}	1.5	6.3 ^b	0.4	26.7ª	4.1
with a	Streptococcus	0.1	0.1	<0.1	<0.1	5.0	2.1
	Blautia	0.7	0.2	1.0	0.4	1.5	0.3
mimicked	Clostridium cluster XIVa	0.6	0.1	1.1	0.2	<0.1	<0.1
	Clostridium cluster XI	0.9 ^b	0.1	1.1 ^b	0.1	17.3ª	2.4
mucosal part	Uncultured Clostridiales	0.1	0.1	0.8	0.1	0.1	0.3
	Allobaculum	7.2	0.6	13.5	0.4	13.3	4.0
	Catenibacterium	0.1	<0.1	<0.1	<0.1	2.4	0.7
	Erysipelotrichaceae	0.1	<0.1	0.0	0.1	2.3	0.6
	Turicibacter	0.1 ^b	<0.1	<0.1 ^b	<0.1	14.8ª	3.3
	Uncultured Acidaminococcaceae	0.5	0.1	0.8	0.1	<0.1	<0.1
	Megamonas	19.1 ^b	1.0	20.5 [⊾]	1.1	0.1ª	0.1
	Uncultured Firmicutes	5.8 ^{a,b}	0.4	3.3 ^b	0.3	11.1ª	1.9
	Fusobacteria	0.3ª	0.1	14.5 ^b	0.8	0.3ª	0.1
	Uncultured Fusobacteriaceae	0.3ª	0.1	14.5 ^b	0.8	0.3	0.1
	Proteobacteria	2.3 ^b	0.2	3.2 ^b	0.2	<0.1ª	<0.1
	Sutterella	1.2 ^b	0.1	1.8 ^b	0.2	<0.1ª	<0.1
Duysburgh et al., 2020	Anaerobiospirillum	1.0 ^b	0.2	0.3 ^{a,b}	0.1	<0.1ª	<0.1
· -	— Pseudomonas	0.1ª	0.1	1.1 ^b	0.2	<0.1ª	<0.1

TEST STUDY: FRUCTO OLIGOSACCHARIDES TREATMENT

Metabolic activity: SCFAs, BCFAs, ammonium Microbial composition

Metabolic activity FOS treatment

	In vitro PC			In vitro DC			In vivo		
	С	TR	P-value	С	TR	P-value	С	TR	P-value
Acetate (mM)	39 ± 4	45 ± 5	0.018	39 ± 3	43 ± 4	0.040	55 ± 7	49 ± 12	0.066
Propionate (mM)	39 ± 3	60 ± 5	< 0.001	36 ± 3	46 ± 3	< 0.001	42 ± 7	41 ±10	0.526
Butyrate (mM)	14 ± 2	18 ± 4	0.011	19 ± 2	28 ± 2	< 0.001	22 ± 9	15 ± 8	0.003
Branched SCFA (mM) Ammonium (mg/L)	2.7 ± 0.1 427 ± 13	2.1 ± 0.1 358 ± 9	<0.001 <0.001	3.1 ± 0.2 527 ± 17	2.7 ± 0.1 449 ± 12	<0.001 <0.001	1.0 ± 0.3 292 ± 61	0.5 ± 0.3 222 ± 63	<0.001 0.002

16

Perspectives

OPEN INNOVATION COLLABORATION

FOLLOW THE EXAMPLE OF HUMAN DIGESTION STUDIES WITH INFOGEST CONSENSUS METHOD

Harmonizing methods

Case specific models

Regulation in vitro work

Very limited data on cat available

Support petfood applications:

- Data support for new nutritional solutions
- Data around mode of action (existing and new nutritional solutions)
- Data on probiotic ability to restore microbial dysbiosis
- Host-microbe interactions

Support pharma:

- Assessment of new microbial restoration strategies (FMT)
- Generate data around drug release, absorption, metabolization etc.
- Support validation of new product formulations

DEVELOPMENTS

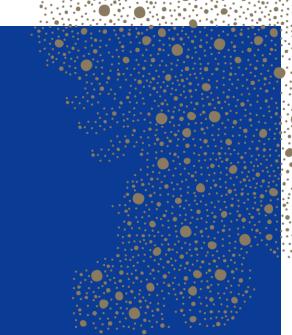
Long vs short term

| **╬** □□□□

Different breeds – sizes – age

Disease states

Consensus methods



THANK YOU FOR YOUR ATTENTION

Special thanks to: Elyse Parent Achraf Adib Lesaux Nabil Bosco

Contact: j.koper@lesaffre.com

lesaffre.com

