

The Biocompatibility Trail a challenging hike towards animal-free testing of Medical Devices

PETER CORNELIS

Safeguarding Global Health®

Expert Lab Testing & Advisory Services

nelsonlabs.com sales@nelsonlabs.com

Comprehensive Sterilization Solutions & Expert Advisory Services

sterigenics.com

Reliable Global Supply of Cobalt-60

nordion.com service@nordion.com

Biological evaluation of a Medical Device

Evaluate the risk of using a medical device

- ISO 10993

- Initially full assessement > 100 animals required

Trail map: Principle of the 3R's for Animal experimentation (1959)

© Max Delbrück Center

Our hike so far

1. The road behind us

- 2. Which current in-vitro (alternate) trails can we follow?
- 3. How do we prepare for our ultimate animal-free hike?

The regulatory trail

- Anchor & regulatory principles of 3 Rs in EU legislation
 - Reduce
 - Refine
 - Replace

EMA:

Member States should actively support the development, validation and acceptance of methods which could reduce, refine or replace the use of laboratory animals.

The ISO 10993 trail

ISO 10993:

First edition

1992

10993-5: Test for in vitro cytotoxicity (updated in 2009)

Major revision of ISO 10993-18: Chemical

- ISO 10993-23: Tests for irritation

characterization for medical devices

- ISO 10993-10: Tests for skin

sensitization

Medical device categorization by Endpoints of biological evaluation Nature of body contact Contact duration A - limited Irrita (≤24 h) Physical tion or Acute Sub Sub Impla nta Car Chr Hem Gen and/or intra acu chro cin B - prolonged onic oco otox Cyto Sens media oge nic Category Contact chemical cuta mic nic tion develop mpa ici tibil tyd (>24 h to 30 d) toxi itiz ted pyro toxi toxi toxi effects informa cityb cityb cityb mental neous geni cityb ityd toxicity^{d,e} C - Long term tion reac citya (>30 d) tivity Xg Eh E Intact skin E E X E E Surface medical E E device Mucosal membrane E E E E E E E Х E Е Breached or A compromised E E E E surface C X E E E E E E E E E Blood path, indirect Α Х E E E E E В Х E E E E Е E Х E Е Е Е E E Externally Tissue/ communicating В E E E bone/ medical device C Х E E Α Х E E E Ε E Ei В Х Е Circulating blood E E

E

Our hike so far

- 1. The road behind us
- 2. Which current in vitro (alternate) trails can we follow?
- 3. How do we prepare for our ultimate animal-free hike?

Endpoints of Biological evaluation

developmental Physical and/or Chemical Acute Systemic toxicity mplantation effects Sub chronic toxicity Hemocompatibility **Material Mediated** Sub acute toxicity Chronic toxicity Carcinogenicity Reproductive Sensitization Genotoxicity Degradation **Pyrogenicity** nformation Cytotoxicity Irritation toxicity

Two trails to evaluate long-term toxicities

Physical and/or

Endpoints of Biological evaluation

Chemical information	Cytotoxicity	Sensitization	Irritation	Material Mediated Pyrogenicity

Acute Systemic toxicity
Sub acute toxicity
Sub chronic toxicity

Implantation effects

Hemocompatibility

Genotoxicity
Carcinogenicity
Reproductive/
developmental tox

Degradation

Endpoint	# of animals	duration
Acute Systemic Toxicity	3-5	3 days
Subacute Systemic Toxicity	6-10	14 days
Subchronic Systemic Toxicity	8-20	28 days
Chronic Systemic Toxicity	<mark>30</mark>	6 months +
Genotoxicity	0	12 weeks
Carcinogenicity	Custom	1-2 years
Repro./developmental tox	Custom	Custom

Two trails to evaluate long-term toxicities

				Endp	oints	of B	iolog	ical e	valua	tion			
Physical and/or Chemical information	Cytotoxicity	Sensitization	Irritation	Material Mediated Pyrogenicity	Acute Systemic toxicity	Sub acute toxicity	Sub chronic toxicity	Chronic toxicity	Implantation effects	Hemocompatibility	Genotoxicity	Carcinogenicity	Reproductive/ developmental tox Degradation

Endpoint	# of animals	duration
Acute Systemic Toxicity	0	~12-16 weeks
Subacute Systemic Toxicity		
Subchronic Systemic Toxicity	Use Cher	mistry testing and a
Chronic Systemic Toxicity	toxicolog	ical risk assessment
Genotoxicity		
Carcinogenicity		
Repro./developmental tox		

Chemistry: fast track towards animal-free testing.

Warning:

You need to know how to!

Design of extractables/leachables (E&L) testing

ANALYSES OF THE EXTRACTS

A Sotera Health company

Approach to E&L

Volatile organic compounds HS-GC/MS Screening

Semi-volatile organic compounds

Non-volatile organic compounds

HS-GC/MS GC/MS Screening

UPLC/MS Screening

ICP/OES
Target

Analytically, we cast a wide net, looking for essentially everything

Endpoints of Biological evaluation

Physical and/or Chemical information	Cytotoxicity	Sensitization	Irritation	Material Mediated Pyrogenicity	Acute Systemic toxicity	Sub acute toxicity	Sub chronic toxicity	Chronic toxicity	Implantation effects	Hemocompatibility	Genotoxicity	Carcinogenicity	Reproductive developmental toxicity	Degradation
								Carl C	·					

Endpoints of Biological evaluation

Chemistry – an animal-free alternative

Endpoints of Biological evaluation

Physical and/or Chemical information	Cytotoxicity	Sensitization	Irritation	Material Mediated Pyrogenicity	Acute Systemic toxicity	Sub acute toxicity	Sub chronic toxicity	Chronic toxicity	Implantation effects	Hemocompatibility	Genotoxicity	Carcinogenicity	Reproductive developmental toxicity	Degradation
					4	4	y				4		y	

Endpoints of Biological evaluation

Material Mediated Pyrogenicity

Sub acute toxicity

Sub chronic toxicity Chronic toxicity

Implantation effects

Hemocompatibility

Genotoxicity

Carcinogenicity

developmental Reproductive,

Degradation

information

Physical and/or Chemical

Cytotoxicity

Sensitization

Irritation

Acute Systemic toxicity

Endpoints of Biological evaluation

Physical and/or Chemical

Sensitization

Material Mediated Pyrogenicity Acute Systemic toxicity

Sub acute toxicity

Sub chronic toxicity

Chronic toxicity

Implantation effects

Hemocompatibility

Genotoxicity

Carcinogenicity

developmental Reproductive toxicity

Degradation

information

Cytotoxicity

The Big Three

A Sotera Health company

ISO 10993-23: Skin Irritation

Skin irritation is defined as the production of reversible damage of the skin following the application of a test substance for up to 4 hours

ISO 10993-23: Skin Irritation

In vitro assay is based on using a Reconstructed Human Epidermis (RhE)

ISO 10993-23: Skin Irritation

Percent viability(%) = $[OD_{PC/TA}/Mean OD_{NC}] \times 100$

Sample	Optica	Density	Percent	Viability	Categor
Sample	Mean	St. Dev.	Mean	St. Dev.	У
Positive Control	0.050	0.006	3.4%	0.4%	1
Saline Negative	1.503	0.003	100.0%	0.2%	NI
Oil Negative	1.605	0.066	100.0%	4.1%	NI
Saline Test Article	1.365	0.120	90.8%	8.0%	NI
Oil Test Article	1.590	0.037	99.1%	2.3%	NI

Table 1 — Classification of test sample

Criteria for <i>in vitro</i> interpretation	Classification
Mean tissue viability is ≤50 % in at least one extraction vehicle	Irritant (I)
Mean tissue viability is >50 % in the two extraction vehicles	Non-irritant (NI)

^{*}Not actual device data*

In vitro reconstructed human epidermis (RhE) model → ISO 10993-23

In vivo irritation test by skin exposure/by intracutaneous administration → ISO 10993-23

The Big Three

A Sotera Health company

Our hike so far

- 1. What have we learned from the previous hikes?
- 2. Which current in vitro (alternate) trails can we follow?
- 3. How do we prepare for our ultimate animal-free hike

Skin sensitization

Def.: Skin sensitization is defined as allergic response to a substance after skin contact.

Test Method	Device Contact	# animals	Data
Guinea Pig Maximization	Indirect	35	Qualitative
Local Lymph Node Assay (LLNA)	Indirect	5	Quantitative
Buehler	Direct	35	Qualitative

Adverse Outcome Pathway (AOP) for Skin Sensitization (OECD)

C. Rodrigues Neves and S. Gibbs

KEY event 1 OECD 442 C (2015): Direct Peptide Reactivity Assay (HPLC)

Key Event 2
OECD 442 D (2018): Keratinosense method

Key Event 3
OECD 442 E (2018): H-Clat – Usense – IL8 assayGard

Key event 4
No validated assay available.

Tests are validated for **pure** chemicals – not for more complex extracts from medical devices!!!

R&D at Nelson Labs

20 different known sensitisers spiked to extracts of medical devices in 2 methods

Keratinosense

A) Concentration response of the known sensitizer

B) Response above this line is considered a sensitizerB

C) Sensitizing concentration for the animal test

250000 200000 200000 3 150000

Keratinosense

Conclusions from several years of research:

- 1. Succes with apolar solvents
- 2. Little or no interference from extraction mixture
- 3. More sensitive than animal tests

20 different knows sensitisers spiked to extracts of medical devices in 2 methods

line is considered a sensitizerB

C) Sensitizing concentration for the animal test

1000

n (μg/mL)

1500

U-sense

The Big Three

A Sotera Health company

A review of our trail

Endpoints of Biological evaluation

Blood loop? developmenta MAT? Physical and/or Chemical **Acute Systemic toxicity** Implantation effects Sub chronic toxicity Hemocompatibility **Material Mediated** Sub acute toxicity Carcinogenicity Chronic toxicity Reproductive Sensitization Genotoxicity Degradation **Pyrogenicity** information Cytotoxicity rritation toxicity

FINAL THOUGHTS

- √ Safe medical devices
- ✓ No animal testing

We are not there yet but we are close!

THANK YOU!

Peter Cornelis pcornelis@nelsonlabs.com

Register for **FREE** access

for this presentation and much more expert content on

Soterahealth.com/academy

