EpiIntestinal microtissues: An *in vitro* model for the study of first-pass drug metabolism and transport

ATAE Symposium, June 2023, Paris Patrick Carius, <u>Yunhai Cui</u>, Markus Holstein, Stephanie Ruez, David Schnell Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany

in vitro screening assays reduce number of animal experiments

Modified from Roden et al., Nat. Rev. Drug Discov, 1, 2002

Oral drug absorption: Caco-2 doesn't tell the whole story

- Advantages of Caco-2 model
 - Immortalized cell line
 - Automated cell culture, automated permeability assay
 - Tight monolayer, relevant P-gp expression level
 - Good in vitro/in vivo correlation regarding fraction absorbed in human intestine

Disadvantages of Caco-2 model

- CYP3A4 activities missing
- Originated from colon, not from small intestine → expression of other drug metabolizing enzymes and transporters may differ
- Additional models in evaluation
 - − Human intestinal organoids \rightarrow Gut-on-chip
 - Static tissue models: e.g. EpiIntestinal

Prediction of first-pass availability of drugs: Assay setup

Boehringer Ingelheim

Drug permeability: EpiIntestinal vs. Caco-2

	Caco-2		EpiIntestina	Putative transporters	
	PappAB (10 ⁻⁶ cm/s)	Efflux	PappAB (10 ⁻⁶ cm/s)	Efflux	
Fexofenadine	2.2	2.4	1.2	2.3	MRP2/Pgp
BI 1	1.1	8.1	3.2	7.4	OATP1B1/MRP2
BI 2	1.8	20.1	0.5	30.2	P-gp
BI 3	0.5	1.2	2.3	1.4	OCT1
BI 4	0.6	0.7	0.4	3.5	OCT1/Pgp
BI 5	0.3	2.9	0.2	12.8	OCT1/Pgp
BI 6	0.8	0.4	0.4	11.6	OCT1/Pgp

 Low permeable compounds tend to show higher efflux in EpiIntestinal compared to Caco-2 → Additional transporter(s) in EpiIntestinal

Rosuvastatin: Impact of BCRP inhibition on bioavailability

1521-009X/44/3/398-408\$25.00 Drug MErABOLISM AND Disrestmon Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics http://dx.doi.org/10.1124/dmd.115.066795 Drug Metab Dispos 44:398-408, March 2016

Solitary Inhibition of the Breast Cancer Resistance Protein Efflux Transporter Results in a Clinically Significant Drug-Drug Interaction with Rosuvastatin by Causing up to a 2-Fold Increase in Statin Exposure

Robert Elsby,¹ Paul Martin, Dominic Surry,² Pradeep Sharma, and Katherine Fenner

		EpiIntestinal		Caco-2			
Substrate	Inhibitor	AB (e-6 cm/s)	BA (e-6 cm/s)	Efflux	AB (e-6 cm/s)	BA (e-6 cm/s)	Efflux
tin	None	0.3	29	100	0.3	6.8	21
suvasta	Lapatinib	2.0	7.7	3.9	0.6	1.3	2.2
	Ko143	2.6	7.9	3.1	0.5	2.9	5.5
Ro	Zosuquidar	0.9	21	25	0.3	4.6	19

 Both in EpiIntestinal model and Caco-2 cellular model, BCRP is the major factor limiting Rosuvastatin absorption → Consistent with literature data

Prediction of first-pass availability of drugs: Assay setup

Intestinal CYP3A activities: EpiIntestinal vs. Caco-2

- CYP3A activities limit the receiver (blood) availability of midazolam in EpiIntestinal
- CYP3A activities absent in Caco-2

Human intestine

Testosterone metabolism: Hepatocyte vs. Enterocytes vs. EpiIntestinal

*: Taken from Zhang et al., Biochem Pharmacol, 156:32 (2018)

- → Low recovery of Tes in Receiver of EpiIntestinal fits to the low oral bioavailability in human
- → Metabolite pattern in EpiIntestinal close to human enterocytes

Glucuronidation: EpiIntestinal vs. Isolated human intestinal mucosa

	EpiIntestinal		Human intestinal mucosa		
	Ezetimibe	Raloxifene	Ezetimibe	Raloxifene	
Remaining parent after incubation (% of T0)	8.4	2.4	40.3	33.2	
Metabolites (% of PA of parent drug @ T0)					
Glucuronides	39.1	2.2	58.6	18.7	
Sulfate		14.1		2.0	

- → UGT and SULT activities identified in EpiIntestial
- → Similar metabolite pattern in EpiIntestinal and isolated human intestinal mucosa

EpiIntestinal: Induction of CYP1A1 by cigarette smoke extract

- Strong increase of CYP1A1 metabolite upon treatment with CSE
- Minor effect of CSE on availability of Riociguat in receiver (consistent with clinic observation)

EpiIntestinal vs Caco-2: Basal enzyme activity screen

	Ca	co-2	EpiIntestinal		
DME/Substrate	Enzyme activities* (pmol/h/cm2) mean / SD	Intracellular metabolite (% of total)	Enzyme activities* (pmol/h/cm2) mean / SD	Intracellular metabolite (% of total)	
CYP1A2/Phenacetin	123.1 / 4.8	BLQ	17.4 / 3.0	BLQ	
CYP2B6/Bupropion	BLQ	BLQ	2.6 / 0.9	BLQ	
CYP2C8/Amodiaquine	11.2 / 1.9	36.5	107.9 / 49.1	37.5	
CYP2C9/Diclofenac	20.8 / 1.6	12.8	28.4 / 1.6	14.7	
CYP2C19/S-Mephenytoin	7.1 / 0.7	4.5	6.9 / 0.7	4.3	
CYP3A4/Testosterone	26.5 / 3.6	BLQ	176.4 /8.0	0.9	
CYP3A4/Midazolam	BLQ	BLQ	1.9 / 0.5	14.9	
CYP2D6/Dextromethorphan	10.9 / 2.7	BLQ	9.2 / 1.3	BLQ	
UGT/7-OH-Coumarin	10770.5 / 721.9	5.5	7583.4 / 855.2	10.0	
SULT/7-OH-Coumarin	508.0 / 46.1	BLQ	1747.4 / 140.0	3.4	
UGT1A1/β-Estradiol	65.3 / 6.9	3.2	243.3 / 6.7	2.8	
CYP2J2/Astemizole	4.9 / 0.3	62.9	17.7 / 5.2	68.7	
CES/BIBF 1120	370.9 / 31.4	24.7	400.0 /12.9	13.3	

• Major differences in drug-metabolizing enzymes

Prediction of human Fa*Fg using EpiIntestinal model

	Recovery (%) basal comp. @24h	Fa*Fg (%)	F (%)	DME/transporter
Buspirone	60	70	5	СҮРЗА
Indinavir	53	100	60	СҮРЗА
Saquinavir	18	25	4	СҮРЗА
Atorvastatin	43	28	14	CYP3A/BCRP/MRP2
Rosuvastatin	30	62	20	CYP2C9/BCRP/MRP2
Felodipine	47	62	15	СҮРЗА
Nifedipine	110	100	90	СҮРЗА
Quinidine	85	100	90	CYP3A4, etc.
Oxybutynin	16	9	6	Esterase, CYP3A
Midazolam	47	67	40	CYP3A4
Irinotecan	62	39	25	Esterase, CYP3A4
Atenolol	83	50	50	
Raloxifene	25	5	2	UGT/Sult
Astemizole	13		Low	CYP2]2, etc.
Bazedoxifene	27		6	UGT

Less than 2-fold difference to human data for all compounds tested

Compounds with extensive intestinal metabolism well captured by EpiIntestinal

Boehringer Ingelheim

- Most of the relevant DME and drug transporters identified in EpiIntestinal
- Clear advantage of EpiIntestinal compared to Caco-2:
 - CYP3A activities completely absent in Caco-2
 - Higher activities of major DMEs in EpiIntestal than in Caco-2

 \rightarrow EpiIntestinal is a useful tool

- For the prediction of human $F_a^*F_g$ (\rightarrow Solubility to be considered separately)
- For mechanistic understanding of DDI in GI tract
- For identification of extrahepatic metabolic pathways
- Future perspective
 - Availability of similar models for preclinical animal species
 - Combination with microfluidics: Any additional benefits?

