

QSAR assisted predictive toxicology and animal experimentation replacement

A Transdisciplinary Conference on Alternative technologies and models (NAMs) to Reduce the use of laboratory animals in Industry – June 6th & 7th, 2023

Dr Sinan Karaboga, Scientific and Commercial director karaboga@harmonicpharma.com

ADEBIOTECH THINK TANK ONE HEALTH

Outline

- The 3Rs principle and computational methods e.g. QSAR for the alternative to animal testing
- Examples of QSAR method in early toxicity profiling
 - Case Study : Selecting most promising molecule(s) with less *in vivo* testing
- Conclusions and advantages of QSAR methods

The 3Rs Principle

COMPUTATIONAL METHODS – e.g. QSAR FOR THE ALTERNATIVE TO ANIMAL TESTING

The 3Rs Principle

GENERAL CONTEXT:

 The 3Rs are principles of responsible science designed by scientists to improve animal welfare and scientific accuracy.

DEFINITIONS:

- Refinement Finding ways of making animals' lives better in labs, this can include toys for animals or better training for technicians
- Reduction Using as few animals as possible to get reliable results

Replacement – Using non-animal alternatives wherever they exist

Alternative methods

 Researchers must, by law, use these techniques if they would be as effective as using animals.

Computer models

- Cells and tissue cultures
- Alternative organisms
 - Lower vertebrates
 - Invertebrates
 - Microorganism

QSAR METHOD FOR EARLY TOXICITY PROFILING

QSAR MODELS

FOR EARLY TOXICITY PROFILING

Case study

CONTEXT :

Client R&D program aims at synthesizing compounds devoid of neurotoxic effect.

• OBJECTIVE :

Select the most promising molecule(s) without neurotoxicity from a large dataset of synthesized compounds.

SOLUTION :

Combining clustering, QSAR and *in vitro* assessment to significantly reduce/replace animal testing.

Case study : NAM to replace animal testing

 Clustering, QSAR predictions and *in vitro* assays as three pillars of a New Approach Method (NAM) to ultimately replace/reduce animal studies.

Clustering of the molecule dataset

- 42 molecules were clusterized based on their structural similarity using spherical harmonic descriptors
- 4 clusters of molecules are identified
- Neurotoxicity results using QSAR are mapped onto the clustering
 - Green (predictive as safe)
 - Orange (inconclusive)
 - Red (predicted as toxic)
- It comes out that cluster 1 containing 15/42 molecules represents the safest molecules to focus on

QSAR prediction versus in vitro assay

	QSAR VS IN VITRO RELIABILTY						
	Correct Prediction	False Prediction	Inconclusive	Tested In vitro	Concordance rate (%)		
cluster 1	9	4	2	15/15	73%		
cluster 2	6	2	-	8/9	75%		
cluster 3	2	-	-	2/3	100%		
cluster 4	7	5	3	15/15	66%		
			GLOBAL	40/42	73%		

- Neurotoxicity is assessed *in vitro* through the inhibitory capacity of compounds onto acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) biological activity
- Overall, 73 % of concordance between QSAR prediction versus *in vitro* result.
- 73% of compounds comprising cluster 1 are correctly assigned by QSAR with regards to *in vitro* assays

In vitro assay versus in vivo experiments

	IN VITRO VS IN VIVO RELIABILTY						
	Correct	False	Inconclusive	Tested In vivo	Concordance rate (%)		
cluster 1	7	0	0	7/15	100%		
cluster 2	2	1	-	3/9	67%		
cluster 3	-	-	-	0/3	-		
cluster 4	5	0	3	8/15	63%		
			GLOBAL	18/42	78%		

- Asexual planarians of the species Dugesia japonica were used for *in vivo* studies which is an effective bridge between *in vitro* and whole animal/ mammalian testing methods
- Overall, 78 % of concordance between *in vitro* and *in vivo* results.
- 100% of compounds comprising cluster 1 are correctly assigned by *in vitro* assays with regards to *in vivo* experiments
- Reliability of *in vitro* assays with regards to *in vivo* experiments is assessed with a reduced number of compounds : 18 out of 42.

47% of animal experiments were skipped

Conclusion

- We assessed neurotoxicity of 42 compounds using clustering, QSAR predictions, and *in vitro* assays combined into a NAM.
 - 47 % of animal experiments were avoided
- This NAM helped to point out that compounds from cluster 1 represent the safest molecules to focus on.
 - 100% concordance of In vivo/In vitro
 - 73% concordance of In vitro/In silico
- As a consequence, any novel chemicals similar to molecules making up cluster 1 are expected to be synthesized without the need to go for *in vivo* experiments.

Conclusion

- QSAR models are one of the alternative methods recognized by regulatory agencies for replacing animal testing when possible.
- Combining clustering approaches, QSAR models and *in vitro* data constitute a powerful NAM
- That NAM enables to reduce significantly animal testing by focusing on the most promising molecules.

Advantages of QSAR and clustering methods

animal testing

experimental assessments

market access with cost-effectiveness

compliance with regulatory requirements

simultaneously on multiple endpoints

THANK YOU !

contact@harmonicpharma.com

