

Encapsulated spheroids applications

Dr. Jérôme Caron, R&D & Operations Manager

Alternatives To Animal Experimentation

June 6, 2023

CONTEXT: THE CRUCIAL NEED FOR NEW PREDICTIVE CELL MODELS

Towards the end of animal experimentation?

Why animal studies are often poor predictors of human reactions to exposure

A lot of drugs failed in clinical trials

Limitations of Animal Studies for Predicting Toxicity in Clinical Trials

Is it Time to Rethink Our Current Approach?

Gail A. Van Norman, MD

JACC: BASIC TO TRANSLATIONAL SCIENCE VOL. 4, NO. 7, 2019 NOVEMBER 2019:845-54

Nature Misleading mouse studies waste medical resources

Erika Check Hayden

J R Soc Med 2008: 101: 120-122. DOI 10.1258/jrsm.2008.08k033

26 March 2014

Science 10 JAN 2023 · 5:30 PM · BY MEREDITH WADMAN FDA no longer needs to require animal tests before human drug trials *Ethical concerns and 3Rs reglementation* EU already banned animal testing for cosmetics

➔ Going faster and further in development & therapy

Complex solutions : Cells & technology Closer and closer to organs

For precision and personalized medicine Quickly find the right treatment

LIMITATIONS OF 2D CELL CULTURE

Some advantages

- Cheap: low-cost maintenance
- Widely used, well-known and user friendly

But non-physiological

- Do not mimic the real organs
- Limited cell-to-cell contact surfaces
- Poor cell organization, polarization, etc.
- Higher drug sensitivity

Challenging for mass production

- Huge surfaces cultures: CellStack, large surface flasks, etc.
- Numerous incubators
- Spoil of culture media, time and energy

Add a dimension to be closer to in vivo

Liver lobule

Kapałczyńska M *et al.*, 2018, <u>Arch Med Sci</u> Jensen C and Teng Y, 2020, <u>Front. Mol. Biosci</u>

3D CELL CULTURE

→ Mimic in vitro what is happening in vivo

- Multiple cell types Homo- and heterotypic cell interaction Paracrine signaling
- Extra-cellular matrix Composition Stiffness Attachment to cells
 - Diffusion gradients O2 Nutrient & soluble factors Proliferation

• Observe cell phenotype, drug response, etc.

Adapted from Langhans SA, 2018, Front. Pharmacol.

DIFFERENT METHODS OF 3D CELL CULTURE

➔ Scaffold-free (or floating) methods

Non-attachment surfaces

Hanging drop

Stirring

He J et al., 2017, Oncotarget

Scaffold-based methods

Decellularized organs

Uygun BE et al., 2010, Nat. Med

Embedding in a matrix

Encapsulation in hydrogel beads

Pasqua M et al., 2020, Biotechnol. Bioeng.

DIFFERENT METHODS OF 3D CELL CULTURE: LIMITATIONS

➔ Scaffold-free (or floating) methods

Non-attachment surfaces

Low throughput

Scaffold-based methods

Hanging drop

1 spheroid per well

Stirring

Shear stress

He J et al., 2017, Oncotarget

Decellularized organs

Scarcity

Uygun BE *et al.*, 2010, <u>Nat. Med</u>

Embedding in a matrix

Diffusion problems

Encapsulation in hydrogel beads

No self-organization

Pasqua M et al., 2020, Biotechnol. Bioeng.

CYPRIO'S ENCAPSULATION TECHNOLOGY

Proprietary technology protected by a family of 4 patents

Liquid-core capsules

6

ADVANTAGES OF ENCAPSULATING CELLS

- 1. Micro-compartmentalization: our technology promotes spheroid formation as this increases probability of gathering
- Metabolites 2. Physiological environment: the capsule porosity ensures a complete exchange of oxygen, nutriments, growth factors, proteins & small molecules between external and internal media
- 3. Easy handling & Spheroid Protection: supernatant media may be aspirated easily while the capsule protect organoids from aspiration and any shear stress
- **4. Flexibility**: the alginate barrier allows the sorting of an accurate number of spheroids per well with no risk of fusion and no need for pooling wells
- 5. Versatility: Integration to diverse experimental plans like Drug Discovery and Development

Drug

Proteins

A TECHNOLOGY FOR ALL TYPES OF CELLS & COMPLEX SYSTEMS

→ Hematopoietic stem cells

→ HepatoPearls[®]

Cancerous cell lines →

Highly proliferative cell line

Day 14

Day 14

1 cell per capsule

Kidney-derived iPSCs →

PODXL

Classical bioassays & integration to specific devices

➔ Microphysiological systems

HEPATOPEARLS[®]: ENCAPSULATED LIVER SPHEROIDS

HEPATOPEARLS: A NOVEL LIVER MODEL FOR LONG TERM STUDIES

- Primary human hepatocyte spheroids using Cyprio technology
- → Spheroids protected with an alginate shell
- → Size-controlled organoids
- → No necrotic core

2D Hepatocytes Day 1 Day 3

Nucleus – Live cells – Dead cells

HepatoPearls[®] Day 10 (delivery) Day 1

Nucleus – Live cells – Dead cells

AN IN VIVO-LIKE STRUCTURE MIMICKING LIVER ARCHITECTURE AND FUNCTIONS

-> Genetic expression of liver-specific genes as high as in 2D culture and maintained over time

→ Genetic expression of liver-specific nuclear receptors

10

AN IN VIVO-LIKE STRUCTURE MIMICKING LIVER ARCHITECTURE AND FUNCTIONS

→ A polarized micro-structure with excretion and synthesis activities

Cell Polarization

Functional Transporters

Albumin secretion

(N=3, n=4)

A TOOL TO STUDY DRUG-DRUG INTERACTIONS

- → Inducibility of CYP P450 enzymes all along their lifespan
 - → HepatoPearls[®] treatment with reference inducer for 3 days
 - Measurement of CYP3A4 enzymatic activity for 6 weeks

• Dose/response curve at D17

• Inducibility over time (Rif 30 µM)

A MINIATURIZED CLEARING SYSTEM FOR DMPK STUDIES

- → Activity of phases I & II enzymes
- $\simeq 500 \text{ HepatoPearls}^{\mathbb{8}}$ (D8)/well incubated with 3 μ M Midazolam
- Midazolam clearance & metabolites appearance (LC-MS/MS)*

CYPRIO

A MINIATURIZED CLEARING SYSTEM FOR DMPK STUDIES

- → Clearance of 8 compounds (LC-MS)
- Low to high-clearance compounds
- 72h analysis without medium changing

CYPRI

A NOVEL MODEL FOR HEPATOTOXICITY ASSAYS

- → Chronic exposures of potential hepatotoxic compounds
 - → Pool of HepatoPearls[®] from 3 different donors
 - Treatment with different drugs for acute (24 & 48h) and chronic (13 days) injuries

THANK YOU FOR LISTENING

Follow us on

cyprio.fr

Contact us: contact@cyprio.fr; jerome.caron@cyprio.fr

Biocitech – Bât. Lavoisier 102, avenue Gaston Roussel 93230 Romainville - France <u>contact@cyprio.fr</u> cyprio.fr

