

RNA Next-Generation Sequencing transcriptomic analysis: an alternative validated method to replace animal *in vivo* tests for assessing the viral safety of cell based Biologics

Sébastien Renouf, PharmD, Chief Pharmaceutical Officer

A Validated Assay within a Validation Strategy

"Method Validation": validating a component with pre-defined specifications Applied to both laboratory and bioinformatics methods

"System Validation" broadly encompasses a range of method validation (*e.g.* extraction through reporting) Requirement: "must detect (replicative) adventitious viruses"

Why performing transcriptome analysis by NGS?

- Transcriptome = analysis of expressed RNAs
- Detects all types of viruses
 - RNA/DNA
 - Circular/linear genomes
 - Single & double-stranded
- Takes advantage of RNA phase of viral replication
 - Including DNA and most latent viruses
 - High levels of expression of viral RNAs : easy to detect
- Can differentiate replicating viruses from carryover:
 - Using strand info, RNA profiles and/or metabolic labelling of nascent RNAs
- Analysis can be agnostic or targeted
- Validated Methods

ICHQ5A(R2) Guideline

Redefining the role of NGS in viral safety testing

3.2.3: "NGS is encouraged as a replacement for *in vivo* assays"

3.2.5.2: "NGS can replace the *in vivo* tests with broad virus detection for unknown or unexpected virus species. NGS can also supplement or replace the *in vitro* cell culture assays for detection of known and unknown or unexpected virus species."

3.2.5.2: "Furthermore, the assay may also be used for the detection of known viruses, and it can replace the HAP, MAP, and RAP tests and other virus-specific PCR assays."

Transcriptome

Model virus selection

(Gombold et al., 2014)

Category A viruses: Higher sensitivity with *in vivo compared to in vitro*

Category B viruses: Lower sensitivity with *in vivo compared to in vitro*

Category C viruses: Detected *in vitro only*

	Vaccine 32 (2014) 2916-2926
	Contents lists available at ScienceDirect
5-22-5-1	Vaccine
ELSEVIER	journal homepage: www.elsevier.com/locate/vaccine

Systematic evaluation of *in vitro* and *in vivo* adventitious virus assays for the detection of viral contamination of cell banks and biological products^{\star}

James Gombold^a, Stephen Karakasidis^a, Paula Niksa^b, John Podczasy^a, Kitti Neumann^a, James Richardson^c, Nandini Sane^c, Renita Johnson-Leva^c, Valerie Randolph^d, Jerald Sadoff^e, Phillip Minor^f, Alexander Schmidt^g, Paul Duncan^h, Rebecca L. Sheets^{i,*}

Comparison of LOD for In Vivo and In Vitro Assays for Model Adventitious Viral Agents

Method comparison

Note: Standardization: ratio of infected/ non-infected cells

Result Expression

RNA Seq : LOD expressed as the ratio of infected/non infected cells which provides NGS signal (reads) and equivalent $TCID_{50}/mL$

In vivo Study

- A dilution is considered positive if at least 20% of animals/eggs die
- LOD is the highest dilution that gives a positive result

Model virus selection

٠

Comparison of LOD for In Vivo and NGS Assays for Model Adventitious Viral Agents

Conclusion

- This is the first comprehensive H:H comparison of an RNAseq transcriptomic assay to *in vivo* tests applied to cells
- NGS-transcriptomic assay **detects 1 infected cell in a background of 10³ to 10⁷ virus-free cells**
 - For viruses detected at low sensitivity or not detected by *in vivo*, NGS shows a better analytical sensitivity and range of detection than *in vivo* and therefore ensures a better diagnostic sensitivity (=probability of detection)
 - For viruses detected at high sensitivity by *in vivo*, detection by NGS is highly efficient and ensures a high sensitivity of detection of cells infected by this type of highly productive viruses
- These results are obtained in challenging conditions using highly diluted infected cells, which underestimate the sensitivity of detection of tests applied to infected cells
- Replacement of *in vivo* tests by NGS would **increase the overall safety of the product**, while being **more rapid**, **less expensive** and **more ethical**.

Thank you

for your attention