

Microfluidic methods for enzyme engineering

Bottom-up integration in metabolic synthetic systems

Jean-Christophe Baret

University of Bordeaux, Institut Universitaire de France

CNRS, CRPP, Soft Micro Systems

Université BORDEAUX

CRPP

- Dr. Thomas Beneyton
- Dr. Nicolas Martin
- Dr. Laura Alvarez
- Dr. Yeseul Park
- Dr. Maude Ducrocq
- Bastien Lambert
- Zi Lin
- Rafael Jimenez
- Vivien Willems...

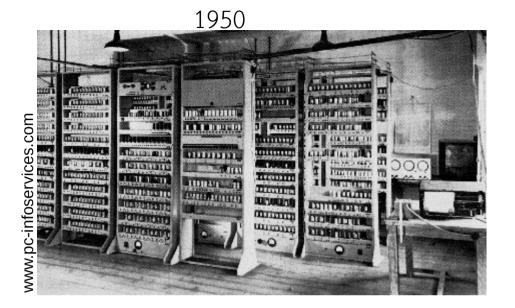
- T. Erb and his group
- T. Miller
- M. Scheffen
- K. Sundmacher and his group
- I. Ivanov
- T. Vidakovic-Koch et al.
- D. Tang and her group
- C. Love

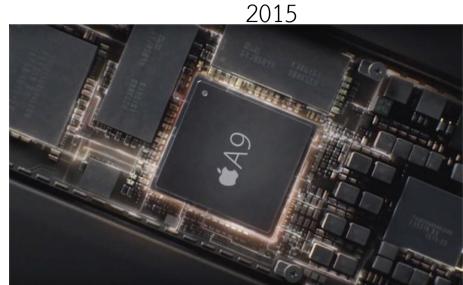
. . .

- **Frontiers of Life** Bordeaux
- Prof. S. Lecommandoux
- Prof. H. Kellay
- Dr. A. Innis
- Dr. J. Amédée
- Dr. C. Lartigue

. . .

- Dr. V. Desvergnes
- Prof. Laure Beven
- Dr. Jean-Paul Douliez




J.-C. Baret – Oct 2023 [[Enzynov'2]]

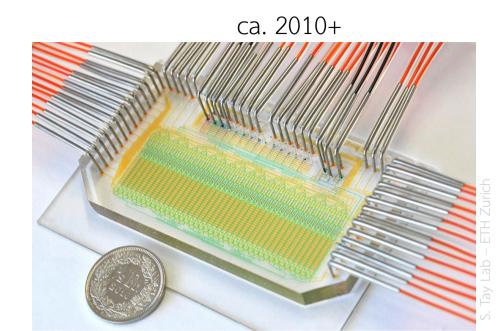
EVOdrops

Technology background

université BORDEAUX

Runs at 500 kHz 512 word memory

Runs at ~GHz GB of memories 10–14 nm resolution for transistor


The most striking example of the power of :

Miniaturization | Automatization | Systems integration

Technology background : µflu

université BORDEAUX

Performs 1 assay per s µL volumes

Performs 1 000 assays per s pL volumes

Translating to Biology the power of

Miniaturization | Automatization | Systems integration

Droplet-Based Microfluidics

VOLUME 86, NUMBER 18

PHYSICAL REVIEW LETTERS

30 April 2001

Dynamic Pattern Formation in a Vesicle-Generating Microfluidic Device

Todd Thorsen,¹ Richard W. Roberts,¹ Frances H. Arnold,¹ and Stephen R. Quake²

¹Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125 ²Department of Applied Physics, California Institute of Technology, Pasadena, California 91125 (Received 9 January 2001)

Droplets as micron-sized microreactors, actuated in a carrier oil in microchannels

nature reviews methods primers	https://doi.org/10.1038/s43586-023-00212-3	Protein engineering	
		Antibody screening	
Primer	Check for updates	Mala a dia mantina	
Droplet-based micro	Molecular diagnostics		
Diopiet-Daseumición	Judics	Single cell analysis	
Thomas Moragues © ¹ , Diana Arguijo ² , Thomas Beneyton ³ , Cyrus M	Iodavi⁴, Karolis Simutis⁵, Adam R. Abate © ⁴,	Strain selections	

. . .

Jean-Christophe Baret (3.6, Andrew J. de Mello¹ , Douglas Densmore (2 & Andrew D. Griffiths⁵

Protein Engineering

Université BORDEAUX

Objective

Optimise catalysts for use in industrial processes, diagnostic systems,...

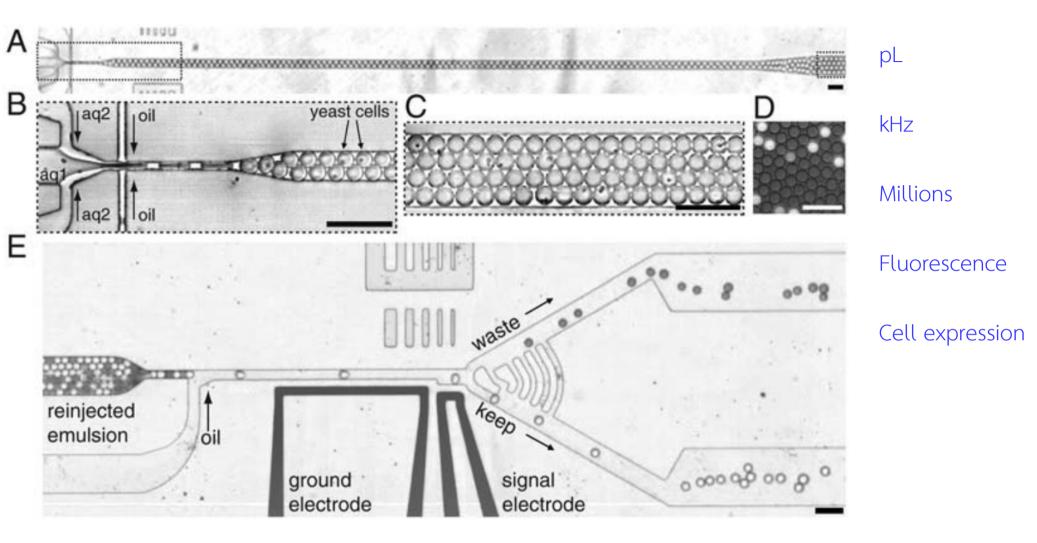
Principle

Improve the enzyme by cycles of mutations and selection (directed evolution) : mimicking Natural Evolution

Implementation in microfluidics

(1) Generate millions of mutants of a native enzyme, expressed in a host or in vitro

(2) Analyse each individually in droplets, select the best ones (hits – typically 1000)

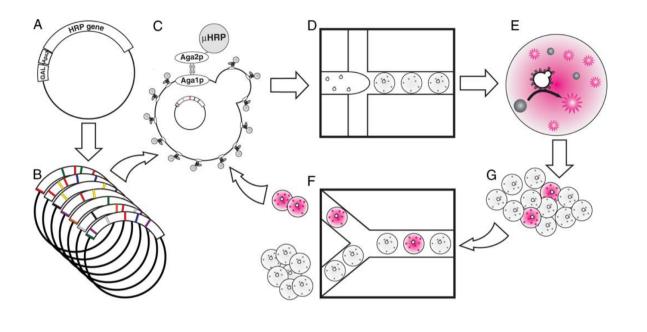

(3) Recover the DNA and repeat (1) from the hits / refine the screen using standard assays

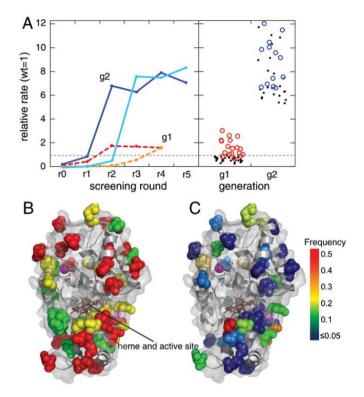
Baret et al. Lab Chip 2009

Agresti et al. PNAS 2010 6/16

Integration

université BORDEAUX




Baret et al. Lab Chip 2009

Agresti et al. PNAS 2010 7/16

HRP Proof of concept

université BORDEAUX

Table 1. Comparison of time and costs* for the complete screen using traditional methods and in microfluidic emulsions

	Robot	Microfluidic drops
Total reactions	5 × 10 ⁷	5 × 10 ⁷
Reaction volume	100 μL	6 pL
Total volume	5,000 L	150 μL
Reactions/day	73,000	1 × 10 ⁸
Total time	~ 2 years	~7 h
Number of plates/devices	260,000	2
Cost of plates/devices	\$520,000	\$1.00
Cost of tips	\$10 million	\$0.30
Amortized cost of instruments	\$280,000	\$1.70
Substrate	\$4.75 million	\$0.25
Total cost	\$15.81 million	\$2.50

Agresti et al. PNAS 2010

Protein Engineering by Dir. Evo.

pubs.acs.org/synthbio

Review

université

Table 2. Summary of the Evolved Biomolecules Described in This Review^a

			expression			
	selection pressure	no. rounds	E. coli	other	library design	reference
		Enzy	mes			
phosphotriesterase	fluorescence	1	cytoplasmic		random	39
TNA polymerase	fluorescence	1	cytoplasmic		semirational	40
peroxidase	fluorescence	2		S. cerevisiae	semirational	41
esterase	fluorescence	5	cytoplasmic		semirational	43
dehydrogenase	absorbance	2	cytoplasmic		random	46
oxidase	fluorescence	1	cytoplasmic		semirational	74
sulfatase	fluorescence	1	display		semirational	75
aldolase	fluorescence	2	cytoplasmic		semirational	77
	fluorescence	6	cytoplasmic		random	78
		Riboz	ymes			
X-motif (RNA)	fluorescence	9		PCR	random	46
		Antib	odies			
anti-tranferrin (K562)	fluorescence	1		hybridoma cells		83
anti-PD-1	fluorescence	2		S. cerevisiae		86
		Apta	mers			
iSpinach	fluorescence	5		IVTT	semirational	90
	fluorescence	5		IVTT	semirational	91
Mango III	fluorescence	9		IVTT	semirational	92
Mango III (A10U), iMango III	fluorescence	4		IVTT	rational	93
Gemini-561, o-Coral	fluorescence	4		IVTT	semirational	94

^{*a*}A total of 8 enzymes, 5 aptamers, 1 ribozyme, and 2 antibodies have been reviewed. We have also dissected the key components underlying these directed evolution experiments.

Directed evolution in drops: molecular aspects and applications,

A. Manteca, A. Gadea, D. van Assche, P. Cossard, M. Gillard-Bocquet, T.

Beneyton, A. Innis, J.-C. Baret, ACS Synthetic Biology (2021)

J.-C. Baret – Oct 2023 [[Enzynov'2]]

9/16

université BORDEAUX

Evolving single enzymes of practical / industrial / therapeutic interest in microfluidics is demonstrated.

Limitations when the enzyme must be produced by organisms

that can evolve, if the enzyme is toxic to the cell...

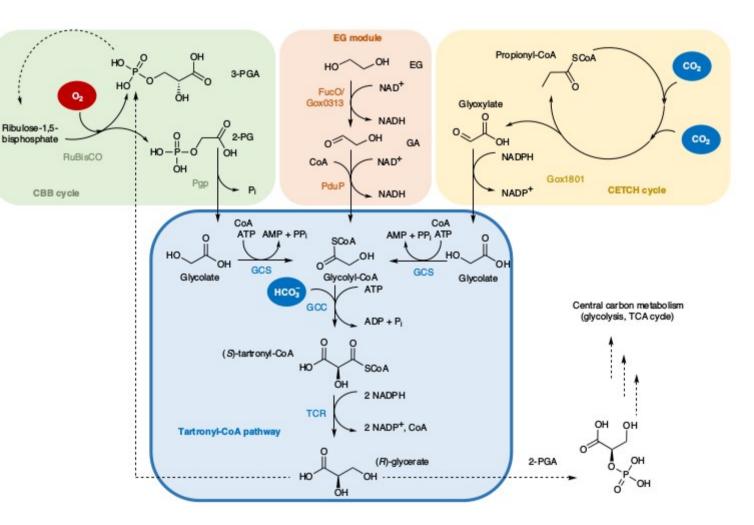
We also need to integrate functionalities of interest in metabolic pathways

Microfluidics use in evolving systems for CO2 fixation (Collaboration with Tobias Erb, MPI Marburg)

- Example 1 : Evolving enzymes of CO2 fixation pathways
- Example 2 : Reconstruction of pathways in droplets

1 - Glycolyl-CoA Carboxylase (GCC)

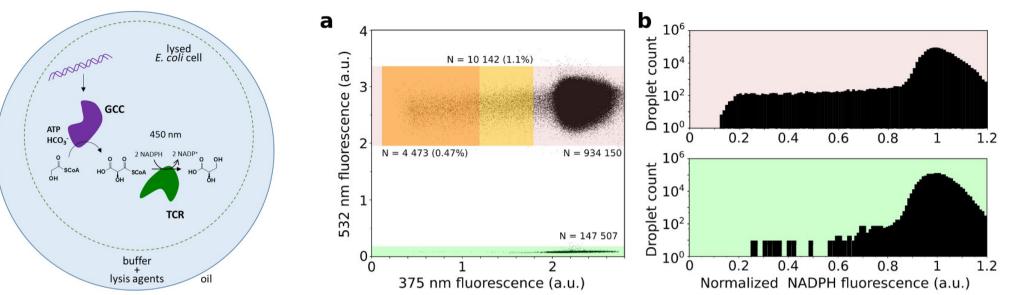
Université BORDEAUX


Engineering CO2 fixation strategies is of relevance in the context of high atmospheric CO2 concentrations

Tartronyl-CoA pathway :

Proposed to produce glycolate from CO2

But :


GCC is lacking

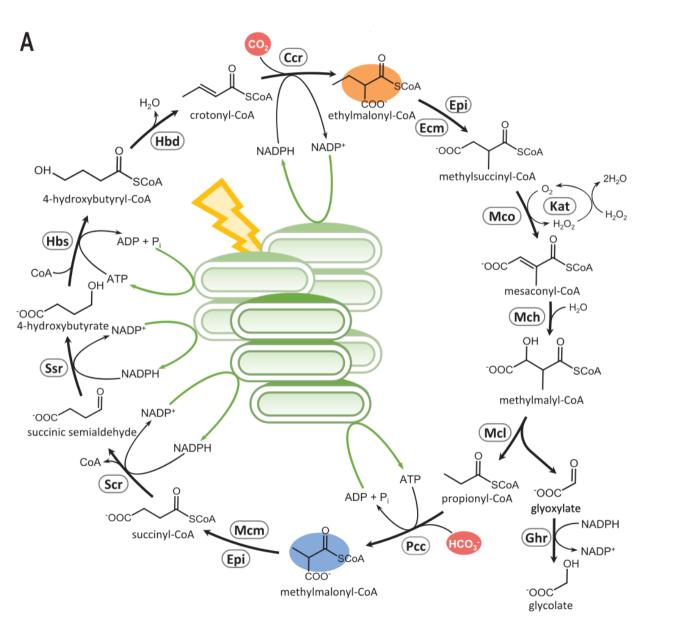
Trudeau et al., PNAS 2018 J.-C. Baret – Oct 2023 [[Enzynov'2]] Scheffen, (...), and Erb, *Nature Catalysis* 2021 11/16

1 - Glycolyl-CoA Carboxylase (GCC)

Screening approach based on NADPH readout in droplets

Library analysis in microfluidics reveals about 5 % of active variants Further screen in plates allows to identify hits

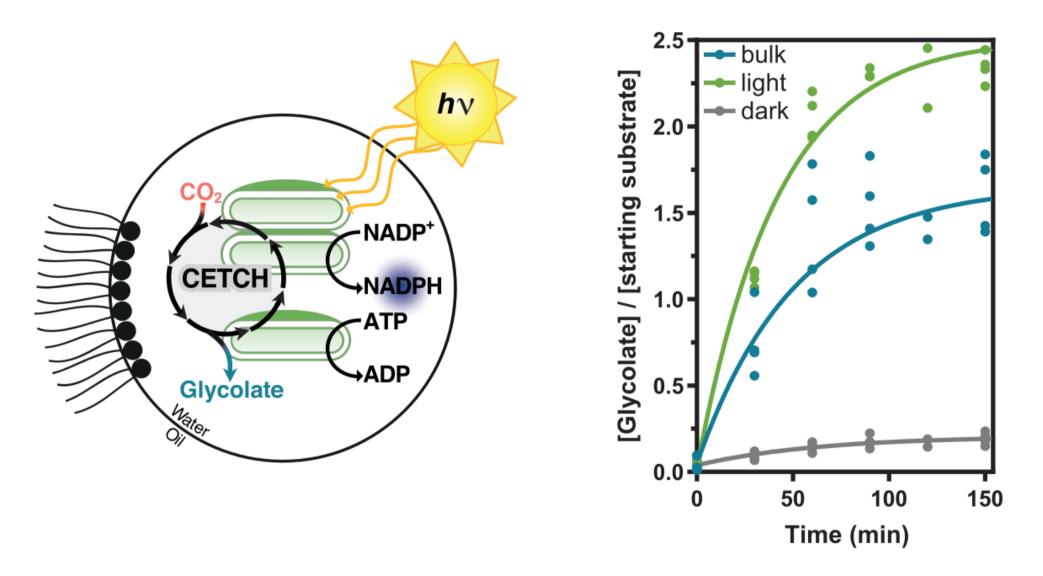
A GCC is finally integrate to run the TaCo Pathway


Microfluidic workflows fully integrate in screening strategies for protein engineering : rapid readout, HTS, pre-screening,...

J.-C. Baret – Oct 2023 [[Enzynov'2]]

Scheffen et al. Nature Catalysis 2021 12/16

2 – Artificial metabolic cycles


CETCH cycle (T. Erb)

CO₂ fixation in a microcompartment using light

Schwander et al. Science (2016) Miller, Beneyton et al. Science (2020)

2 - Artificial metabolic cycles

Efficient biomimetic synthesis of C₂ compounds from CO₂

Miller, Beneyton et al. Science (2020)

2 - Artificial metabolic cycles

Droplets as microreactors for the integration and miniaturization of metabolic cycles (artificial)

Further use possible for screening (eg fluorescence readout)

Microfluidics usable to screen experimental conditions (compositions)

Miller, Beneyton et al. Science (2020)

Take Home Message

Protein engineering benefits from microfluidic methods Microfluidics for the selection of hits

Microfluidics generate data (phenotypes) at high throughput that can be linked to genotypes (DNA recovery)

- Usable to improve molecules (biocatalysts)
- Train IA-based models to predict sequence/function properties ?