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Global primary energy consumption by source
Primary energy is calculated based on the 'substitution method' which takes account of the inefficiencies in fossil fuel
production by converting non-fossil energy into the energy inputs required if they had the same conversion losses as

fossil fuels.
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Use

Using captured CO, as an input
or feedstock to create products
or services.

Carbon Capture

Capturing CO, from fossil or
biomass-fuelled power stations,
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Abdulla et al. (2021) Environ. Res. Letters: \ 4

https://doi.org/10.1088/1748-9326/abd19e

IEA (2021) About CCUS, Technology Report: https://www.iea.org/reports/about-ccus 3
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Reactive Absorption Carbon Capture

“Cleaned” X
Gas g, UseorStore CO, = Geologic storage
8 @ 9 dc

The Sleipner field in the North Sea. (Photo: Harald Pettersen / Equinor ASA)

i ! i « CO, separated from natural gas is injected
i ! into the Utsira aquifer under the North Sea
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Conventional Carbon Capture Schematic Requires a catalyst!
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Carbonic Anhydrase Reaction Catalysis

, Zinc in the
enzyme solution —e—dl water ,
0.8 enzyme s

“active site”

Difference in time
provides measure
of enzyme activity

Optical density (OD)

0 Carbonic anhydrase

0 2 4 6 8 10 12 14 16 Image credit: Vlad Lunin

Time after dosing CO2 water (seconds)

pH change Color change of indicator P H l
(Bromothymol blue)

CO, +H,0 &> \_/

Alkaline buffer

CO, becomes “captured” as soluble bicarbonate ion neutralizes the
released proton 5

Spectophotometéf
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Biocatalytic

Textiles + Enzymes = Textiles

“Structural materials” “Biochemical catalysis”

Reuse the
‘Flexible materials *High efficiency biocatalysts
sLarge surface area *Use less toxic solvents
. Improve
*Transport water *Sustainable functionality
Structural Light weight Position the
materials packing I ili I :
(e.g. porosity) ; materials Immobilization bi ocatalysts
Biobased —
SR Potential for Versatile
Degradable scaling up;

low cost modular design



Making & Pretesting Biocatalytic Textiles

Immobilized Enzyme Activity Assessment
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Glutaraldehyde (GA) Enzyme NH2

Enzyme
Immobilization
Chemistry
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Shen et al. (2022) Catalysts



What's Happening inside the CATSP?

Absorption
Solvent \

Clean Gas Out

Textile

9 :
.
I ot
iy
“o

. . Biocatalytic
Textile Structured Packing bt Eibers
FEIT s o0 a8y MixedGasln {
CATSP = Carbonic Anhydrase Textile Structured Packing Shen et al. (2022) Catalysts

Yuan et al. (2021) Adv. Mat. Int.

Textile causes liquid to spread and forces gas Enzyme rapidly converts CO, into Textile guides
to contact (“bump into”) the liquid highly soluble bicarbonate ion liquid flow
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Biocatalytic Textlle Gas-Liquid Contactor

] 10% CO, inlet concentration
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Flow-through CATSP contactor works for both flue gas
Absorber Schematic and direct air using benign solvents .



CATSP-Gen2 Durability & Versatility

During 71 days* Single module result — stack modules

to increase capture efficiency* Deep levels of DAC are possible
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*J. Shen, Y. Yuan, S. Salmon. Catalysts 2022, 12(10): 1180. Textile filters with CA attached to their surface
https://doi.org/10.3390/catal12101108 improve gas-liquid contact for fast C02 removal:

system works best at elevated pH
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“Drop-in” or Enabler for “DAC-DSU”

“Cleaned” Air

Ambient
Air |

> [ ]

®e
"Q.o ’
Carbonic Anhydrase ...‘ & T ___
Textile Structured > ° Absorber
Packing Z90°C

HCO;

Enables use of solvents that can expand CO, utilization options

OR

Eliminate Desorption Stage!
Enable Direct Use of Inorganic Carbon!

Combined Capture & Use

Neutralize industrial
effluents (alkali + M?*)

Enhance algae growth
(biofuels & feed)

Electrochemical reduction
(platform chemicals)

12
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Paths to Scale-up

v Near-term

Lab scale Small bench-scale* Small field scale** Full commercial scale***

(NCSU) (UK-CAER) (Biogas upgrading)

Develop modular
designs for rapid

* Bench-scale CO, Capture Unit at University of Kentucky’s Center for Applied Energy Research: deployment
https://netl.doe.gov/sites/default/files/netl-file/J-Thompson-UKY-CAER-Increased-Mass-Transfer.pdf
** Biogas Upgrading — Technical Review, Energiforsk: http://vav.griffel.net/filer/C_Energiforsk2016-275.pdf

*** Petra Nova Commercial-scale CO, Capture Project: https://www.nrg.com/case-studies/petra-nova.html

13/
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Thank you!

Sonja Salmon, sisalmon@ncsu.edu

Textile Biocatalysis Research
https://sites.textiles.ncsu.edu/textile-biocatalysis/

Biocatalyst Interactions with Gases (BIG) Collaboration
https://biocat.ncsu.edu/
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