

DANISH TECHNOLOGICAL INSTITUTE

ENZYNC: ADDRESSING DIFFICULT TO RECYCLE PLASTICS WITH ENZYMES

Alexander Sandahl ales@teknologisk.dk

A PART OF THE EUROPEAN R&D-NETWORK

The institute is a member of EUROTECH*, along with nine of the biggest Research and Technology Organisations in Europe:

- CEA
- Fraunhofer
- TNO
- VTT
- SINTEF

- RISE
- IMEC
- Tecnalia
- AIT
- DTI

*EUROTECH is a special interest group originating from EARTO (the European Association of Research and Technology Organisations)

DANISH TECHNOLOGICAL INSTITUTE

STRATEGIC FOCUS

DANISH TECHNOLOGICAL INSTITUTE

ENZYNC

Research project funded by the Novo Nordisk Foundation **Project period**: 2022-2028

Project members:

Prof. Daniel Otzen (Aarhus University)

Prof. Søren Thirup (Aarhus University)

Prof. Maria J. Ramos (University of Porto)

Prof. Pedro. A. Fernandes (University of Porto)

Prof. Peter Westh (Technical University of Denmark)

Prof. Jens Preben Morth (Technical University of Denmark)

Prof. Uffe Mortensen (Technical University of Denmark)

Danish Technological Institute

Vision: discovery and development of enzymes for recycling of plastic thermosets

PLASTICS ARE POLYMERS

THERE ARE TWO TYPES OF PLASTICS

TEKNOLOGISK

THERE ARE TWO TYPES OF PLASTICS

(not crosslinked)

(crosslinked)

370 million tons plastic produced per year (85% thermoplastic, 15% thermoset)

WHAT IS THE FATE OF PLASTIC WASTE?

OPPORTUNITY FOR DENMARK, 2019, McKinsey, Innovation Fund Denmark]

STATE OF THE ART FOR PLASTIC RECYCLING: THERMOPLASTICS

STATE OF THE ART FOR PLASTIC RECYCLING : THERMOSETS

CHEMICAL COMPOSITION OF PLASTIC

PROJECT WORKFLOW

TEKNOLOGISK INSTITUT

PROJECT WORKFLOW

TEKNOLOGISK INSTITUT

DISCOVERY FUNNEL

HIGH THROUGHPUT SCREENING

- ✓ validated against known PURases
- ✓ low/no toxicity
- ✓ substrate penetrates cells
- ✓ product does not leak out of cells

HIGH THROUGHPUT SCREENING

- ✓ validated against known PURases✓ low/no toxicity
- ✓ substrate penetrates cells
- ✓ product does not leak out of cells

HIGH THROUGHPUT SCREENING

PROJECT WORKFLOW

TEKNOLOGISK

Targets:

TEKNOLOGISK INSTITUT

ACKNOWLEDGEMENTS

Aarhus University

Center director Prof. Daniel Otzen (Aarhus University), dao@inano.au.dk Prof. Søren Thirup (Aarhus University) Dr. Andreas Møllebjerg Nanna Miang Lyngsø Malthe Kjær Bendtsen Deniz Bicer

University of Porto

Prof. Maria J. Ramos (University of Porto) Prof. Pedro. A. Fernandes (University of Porto) Dr. Pedro Paiva Dr. Pedro Ferreira Luís Teixeira

Technical University of Denmark

Prof. Peter Westh Prof. Jens Preben Morth Prof. Uffe Mortensen Robert Hansen Jagrelius Dr. Laura Rotilio Benjamin Rønnestad Dr. Kelly Marie Dwyer Rune Rahbek Østergaard

Danish Technological Institute Dr. Andreas Sommerfeldt Dr. Allan Robertson Petersen Dr. Martin Bundgaard Johansen Dr. Signe Strange Grønborg

TEKNOLOGISK

THANK YOU FOR YOUR ATTENTION!

TEKNOLOGISK