SEQENS

OUR SCIENCE FOR YOUR FUTURE

Stratégie de préformulation et de formulation de PA pour augmenter leur biodisponibilité orale

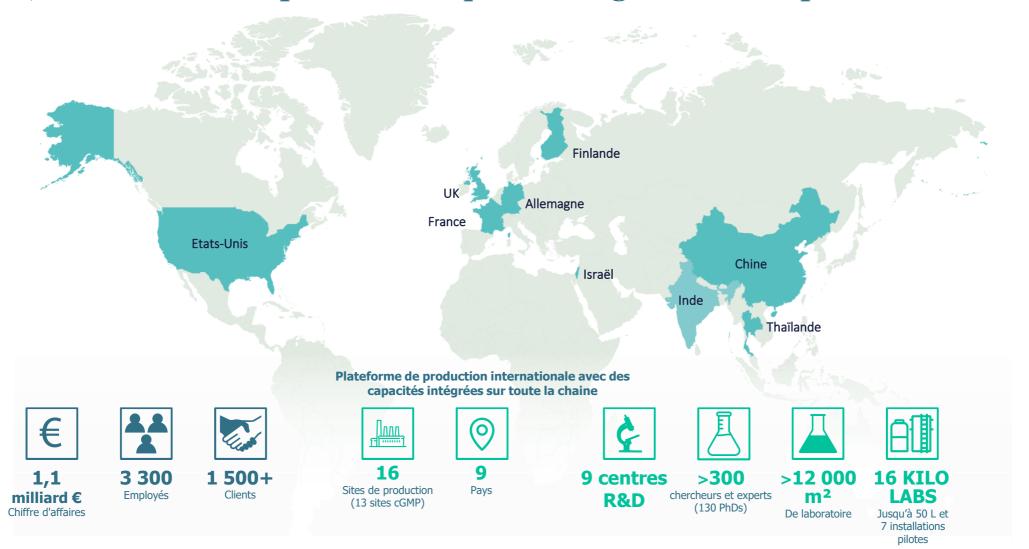
Sonia Lombardo

Adebiotech, 16 octobre 2024

SEQENS est un leader mondial dans le développement et la production de principes

PLATINUM Top 1%

Sustainability Rating
JAN 2024

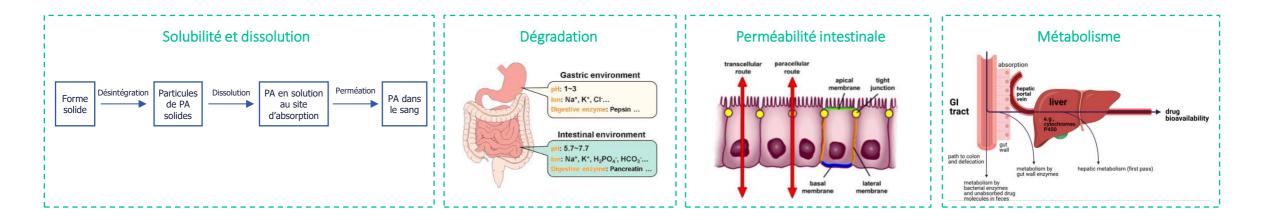

GOLD | Top 5%

ecovadis

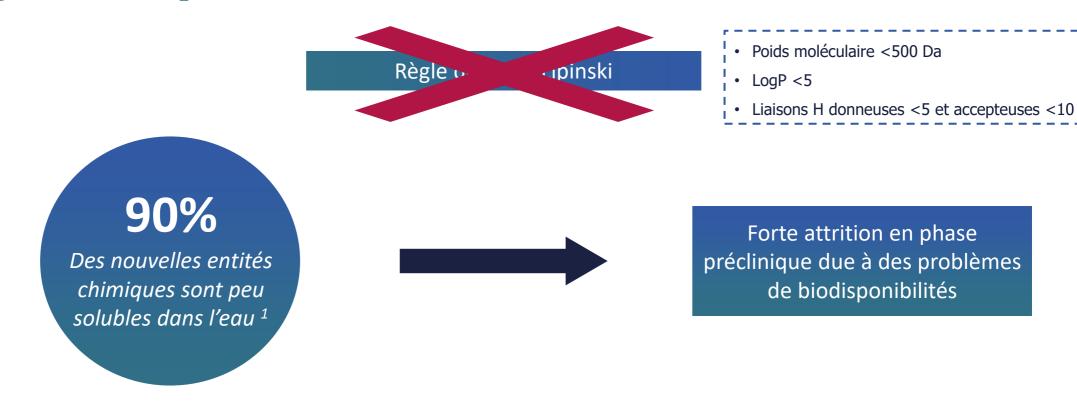
Sustainability Rating

JAN 2024

actifs, d'intermédiaires pharmaceutiques et d'ingrédients de spécialités



La biodisponibilité orale


La biodisponibilité = fraction de la dose administrée qui atteint la circulation sanguine inchangée

Augmenter la biodisponibilité permet de :

- Augmenter l'efficacité à dose égale
- Réduire la dose
- Diminuer les potentiels effets indésirables
- Réduire les variabilités inter/intra-individuelles

Challenges de la biodisponibilité orale

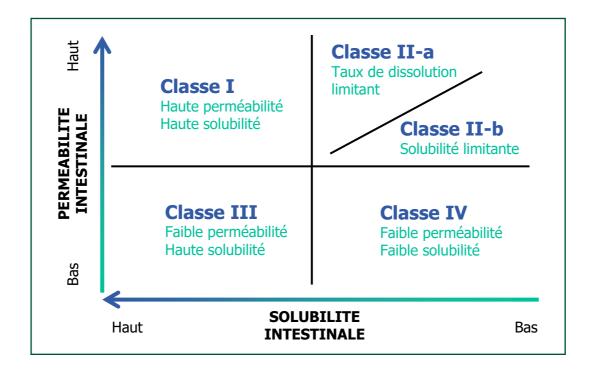
Anticiper les problèmes de biodisponibilités pour « dérisquer » le développement

Stratégie de préformulation du PA

Caractérisation du PA pour anticiper sa biodisponibilité et sa formulation

Caractérisation physique

- pKa
- LogP et LogD
- Solubilités à divers pH
- Solubilités milieux gastro-intestinaux
- Cinétique de dissolution et « food effect »
- Transition thermique (Tm et Tg, dégradation)
- Aire de surface polaire (TPSA)
- Taille des particules et aire spécifique


Caractérisation biologique

- Perméabilité intestinale
- Transporteurs d'efflux (P-gp, BCRP)
- Voie de métabolisme

Caractérisation du PA pour évaluer sa biodisponibilité

La Developability Classification System (DCS)^{1,2} est une modification de la Biopharmaceutical Classification System (BCS) pour une utilisation en développement

- BCS: classification de la FDA pour des attributions de dispenses d'études de bioéquivalence
- DCS: créer par Butler et Dressman pour le développement de molécule pour la voie orale

Les cas extrêmes de PA à faible solubilité

Les PA avec une faible solubilité aqueuse peuvent appartenir à 2 grandes familles :

Les processus physiques tels que l'**amorphisation** dans une matrice polymérique permettent de rompre les liaisons intermoléculaires et d'améliorer la solubilité apparente du PA.

Les **formulations lipidiques** permettent d'augmenter la solubilisation du PA en formant des émulsions dans le tractus gastro-intestinal.

Ces cas extrêmes doivent être identifiés rapidement pour adapter la stratégie de formulation

Stratégies pour augmenter la biodisponibilité

Augmenter la perméabilité

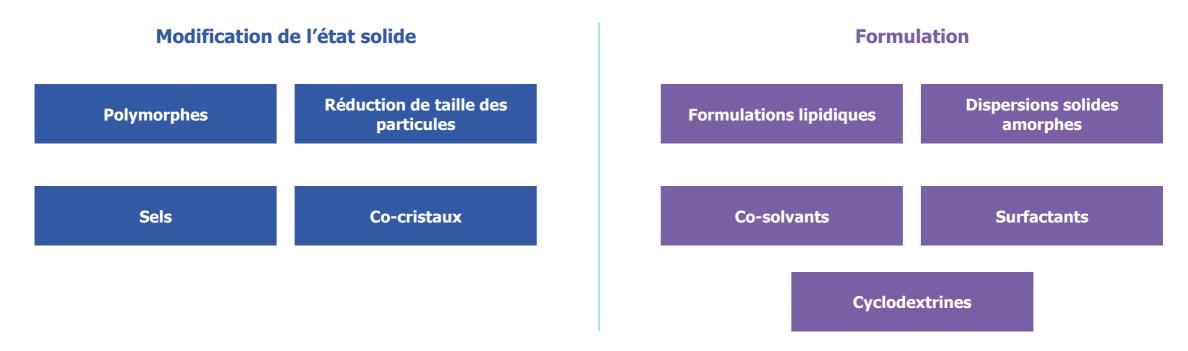
Prodrogues

Modification de la structure chimique du PA pour augmenter la lipophilicité ou pour cibler un transport actif

Promoteurs de perméation

Utilisation de "permeation enhancers" (ex: salcaprozate sodium ou sodium caprate) pour augmenter la perméabilité des peptides à travers la membrane intestinale

Sels lipophiles

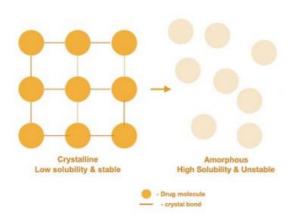

Formation d'un sel avec un contre-ion lipophile puis incorporation dans une formulation lipidique

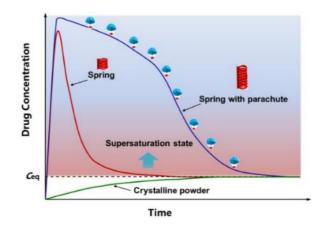
Nanoformulations

Encapsulation dans des nanoparticules ou liposomes

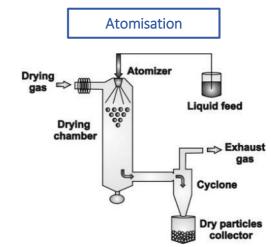
Stratégies pour augmenter la biodisponibilité

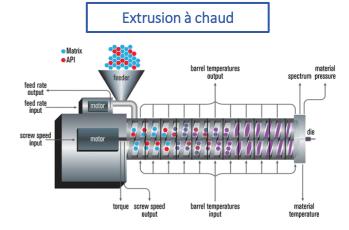
Augmenter la solubilité/cinétique de dissolution




L'association d'un composé à une technologie inadaptée a pour conséquence :

- un développement difficile
- une augmentation du temps et des coûts de développement
- un risque élevé d'échec

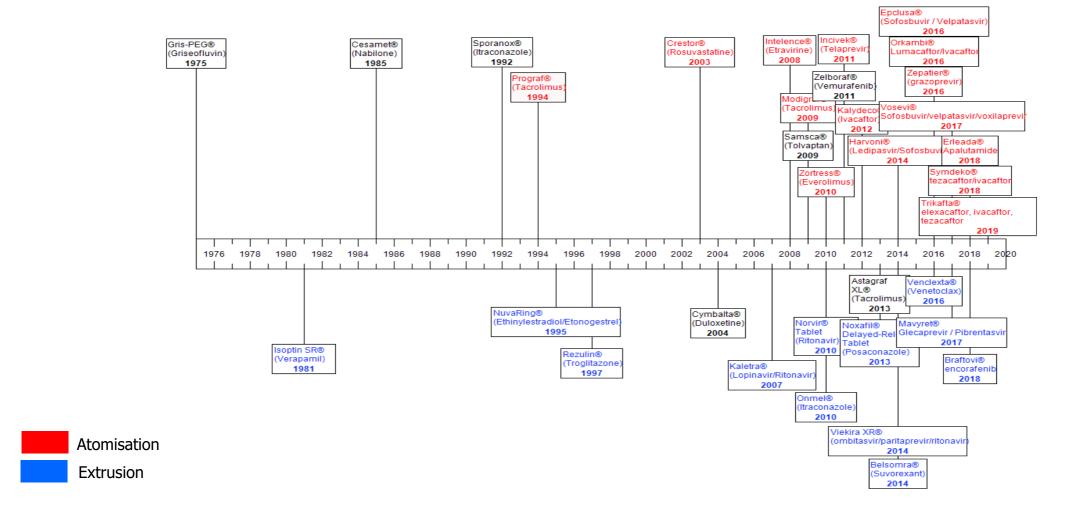

Dispersions solides amorphes (ou ASD)


= piège de molécule de PA à l'état amorphe dans une matrice polymérique

- 2 technologies principales pour leur production :
 - L'atomisation (spray-drying)
 - L'extrusion à chaud (Hot Melt Extrusion, HME)

H. Al-Obaidi et al., 2021, Pharmaceutics

M. Yang et al., 2016, Journal of Pharmacy and Pharmaceutical Sciences


H. Patil et al., 2016, AAPS PharmSciTech

A. Sosnik et al., 2015, Advances in Colloid and Interface Science

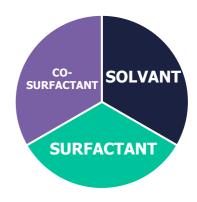
Atomisation VS Extrusion

	ATOMISATION	EXTRUSION A CHAUD
AVANTAGES	 Procédé compatible avec produits thermiquement sensibles Peu de quantité de PA requises Obtention de microparticules poreuses qui facilitent la dissolution 	 Procédé sans solvant Obtention de différentes formes (granules, comprimés, implants, films)
INCONVENIENTS	 Nécessité de trouver un solvant organique commun pour le PA et le polymère Nécessité d'une étape de séchage secondaire pour éliminer les solvants résiduels Poudres électrostatiques 	 Procédé thermique qui peut entrainer la dégradation du PA Bonnes propriétés d'écoulement

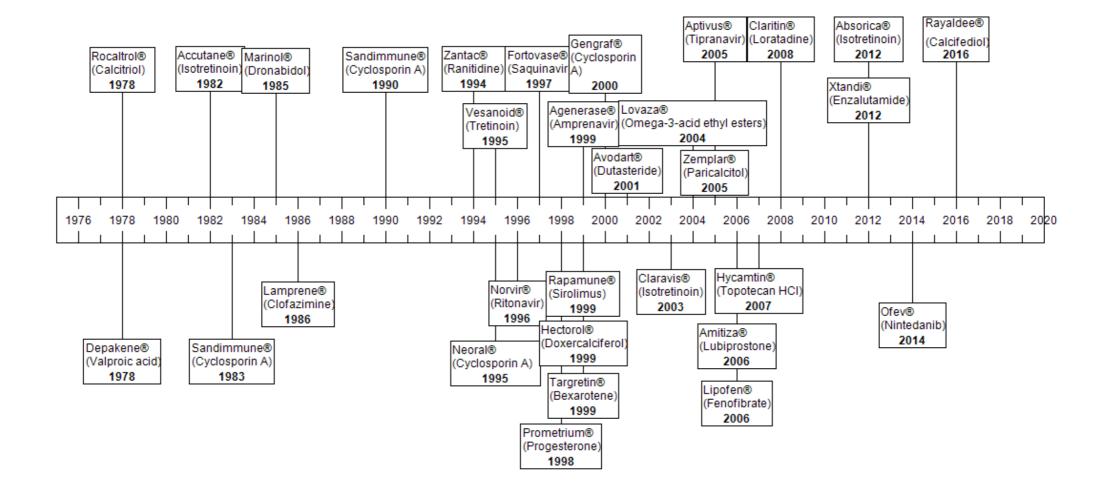
Dispersions solides amorphes sur le marché

Formulations lipidiques


Surtout utiles pour les PA « grease ball »


- Formulation de PA dissous dans un excipient lipidique
- Les lipides gardent le PA dans une forme solubilisée
- La formulation doit garder le PA solubilisé pendant la digestion
- Les formulations peuvent augmenter la perméabilité intestinale du PA ou son transport par le système lymphatique

Formulations lipidiques


Type I Huiles	Type II SEDDS	Type IIIA and IIIB SEDDS/SMEDDS	Type IV Lipid-free
Lipides, sans surfactant	Pas de composant soluble dans l'eau	Lipides et surfactants solubles dans l'eau et optionnellement un cosolvant	Comprend uniquement des surfactants solubles dans l'eau et des cosolvants
Pas ou peu de dispersion	Emulsion	IIIA: émulsion fine IIIB: dispersion transparente	Solution micellaire
Besoin de digestion	Sera digéré	Digestion pas forcément nécessaire	Digestion limitée

Hydrophilicité de la formulation

Digestion

SEEDS: Self Emulsifying Drug Delivery System SMEDDS: Self Micro Emulsifying Drug Delivery System

Formulations lipidiques sur le marché

Conclusions

- La caractérisation du PA à travers la préformulation est essentielle pour anticiper les challenges de biodisponibilités
- L'optimisation de la biodisponibilité doit être faite tôt dans le développement pour diminuer le risque d'échec
- La stratégie choisie doit être adaptée à chaque PA selon ses caractéristiques physico-chimiques

Merci pour votre attention.

Sonia Lombardo

Engineer preformulation sonia.lombardo@seqens.com

SEQENS